Applese 涂颜色(欧拉降幂)
链接:https://ac.nowcoder.com/acm/contest/330/E
来源:牛客网
题目描述
精通程序设计的 Applese 叕写了一个游戏。
在这个游戏中,有一个 n 行 m 列的方阵。现在它要为这个方阵涂上黑白两种颜色。规定左右相邻两格的颜色不能相同。请你帮它统计一下有多少种涂色的方法。由于答案很大,你需要将答案对 109+7109+7 取模。
输入描述:
仅一行两个正整数 n, m,表示方阵的大小。
输出描述:
输出一个正整数,表示方案数对 109+7109+7 取模。
示例1
输入
1 1
输出
2
示例2
输入
2 2
输出
4
备注:
1≤n,m≤10^100000
思路:思路很简单,就是2的n次方膜1e9+7,但是我们有个问题,就是数据的问题,10^100000,数据太大,我们就可以用欧拉降幂,基本板子题 欧拉降幂
代码:
#include <bits/stdc++.h>
#define ll long long int
#define mod 100000007
using namespace std;
char a[100005];
char b[100005];
ll x,z=mod;
ll quickpow(ll x,ll y,ll z)
{
ll ans=1;
while(y)
{
if(y&1)
ans=ans*x%z;
x=x*x%z;
y>>=1;
}
return ans;
}
ll phi(ll n)
{
ll i,rea=n;
for(i=2;i*i<=n;i++)
{
if(n%i==0)
{
rea=rea-rea/i;
while(n%i==0)
n/=i;
}
}
if(n>1)
rea=rea-rea/n;
return rea;
}
int main()
{
while(scanf("%s %s",a,b)!=EOF)
{
ll len=strlen(a);
ll p=phi(z);
ll ans=0;
for(ll i=0;i<len;i++)
ans=(ans*10+a[i]-'0')%p;
ans+=p;
printf("%lld\n",quickpow(2,ans,z));
}
return 0;
}
Applese 涂颜色(欧拉降幂)的更多相关文章
- Applese涂颜色-欧拉降幂公式
链接:https://ac.nowcoder.com/acm/contest/330/E来源:牛客网 题目描述 精通程序设计的 Applese 叕写了一个游戏. 在这个游戏中,有一个 n 行 m 列的 ...
- hdu4549 矩阵快速幂 + 欧拉降幂
R - M斐波那契数列 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit ...
- bzoj3884: 上帝与集合的正确用法 欧拉降幂公式
欧拉降幂公式:http://blog.csdn.net/acdreamers/article/details/8236942 糖教题解处:http://blog.csdn.net/skywalkert ...
- Codeforces Round #536 (Div. 2) F 矩阵快速幂 + bsgs(新坑) + exgcd(新坑) + 欧拉降幂
https://codeforces.com/contest/1106/problem/F 题意 数列公式为\(f_i=(f^{b_1}_{i-1}*f^{b_2}_{i-2}*...*f^{b_k} ...
- D - Power Tower欧拉降幂公式
题意:给你一个数组a,q次查询,每次l,r,要求 \(a_{l}^{a_{l+1}}^{a_{l+2}}...{a_r}\) 题解:由欧拉降幂可知,最多log次eu(m)肯定变1,那么直接暴力即可,还 ...
- TOJ 3151: H1N1's Problem(欧拉降幂)
传送门:http://acm.tzc.edu.cn/acmhome/problemdetail.do?&method=showdetail&id=3151 时间限制(普通/Java): ...
- HDU4704(SummerTrainingDay04-A 欧拉降幂公式)
Sum Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total Submi ...
- 2018牛客网暑期ACM多校训练营(第四场) A - Ternary String - [欧拉降幂公式][扩展欧拉定理]
题目链接:https://www.nowcoder.com/acm/contest/142/A 题目描述 A ternary string is a sequence of digits, where ...
- HDU 2814 斐波那契循环节 欧拉降幂
一看就是欧拉降幂,问题是怎么求$fib(a^b)$,C给的那么小显然还是要找循环节.数据范围出的很那啥..unsigned long long注意用防爆的乘法 /** @Date : 2017-09- ...
随机推荐
- WebRTC的拥塞控制技术<转>
转载地址:http://www.jianshu.com/p/9061b6d0a901 1. 概述 对于共享网络资源的各类应用来说,拥塞控制技术的使用有利于提高带宽利用率,同时也使得终端用户在使用网络时 ...
- css垂直居中方法(一)
第一种方法:首先用margin:0 auto实现水平居中,然后设置position:relative,设置top为50%(父元素高度的50%),然后设置margin-top:-150px(设置负值是因 ...
- python的面向对象编程
面向对象编程是一种程序的范式,它把程序看成是对不同对象的相互调用,对现实世界建立的一种模型. 面向对象编程的基本思想,类和实例.类用于定义抽象对象,实例根据类的定义被创建出来. 在python当中我们 ...
- Linux系统的安装(centos的下载地址:http://mirror.symnds.com/distributions/CentOS-vault/6.3/isos/i386/,选择:CentOS-6.3-i386-bin-DVD1.iso 这个下载并进行安装)
1.首先打开虚拟机: 在上面的那个按钮旁有一个下拉的符号,点开后会看到一个进入固件的按钮,直接点击进去. 便会进入这个界面: 在这个界面其实我们不需要该任何的东西,但是我们需要进入boot界面看一眼, ...
- python+requests+excel 接口测试
1.EXCEL文件接口保存方式,如图. 2.然后就是读取EXCEL文件中的数据方法,如下: import xlrd class readExcel(object): def __init__(self ...
- 定时node-schedule 模块的使用
You can install using npm. npm install node-schedule var schedule = require('node-schedule'); var j ...
- SimpleDateFormat-多线程问题
SimpleDateFormat-多线程问题: SimpleDateFormat类在多线程环境下中处理日期,极易出现日期转换错误的情况 import java.text.ParseException; ...
- Win10_禁用自动更新(官方版)
1> win键>输入服务>打开>找到windowsUpdate-->启动类型为-禁用 -->> 恢复失三个选项改为-->>无操作 2>win ...
- Blender 工具使用——模式切换
Blender 工具使用--模式切换 制作骨架时 在物件模式(Object Mode)下使用鼠标右键选中一个骨架,按Tab键,可以切换为编辑模式(Edit Mode),按Ctrl + Tab可以进入骨 ...
- Zbar -- 源码分析
博客转载自:https://blog.csdn.net/sunflower_boy/article/details/50783179 //Img_scanner.c 文件内 int zbar_scan ...