「CF744C」Hongcow Buys a Deck of Cards「状压 DP」
题意
你有\(n\)个物品,物品和硬币有\(A\),\(B\)两种类型,假设你有\(M\)个\(A\)物品和\(N\)个\(B\)物品
每一轮你可以选择获得\(A, B\)硬币各\(1\)个,或者(硬币足够)花\(\max(a_i - M, 0)\)个\(A\),\(\max(b_i - N, 0)\)个\(B\)买\(i\)这个物品
问买到所有物品最少要多少轮
题解
巧妙的\(dp\),考虑间接设计状态
\(f[S][A] = B\)表示\(S\)这个集合买过了,\(A\)类花\(\sum a_i-A\)个硬币, \(B\)类花\(\sum b_i - B\)个硬币,这里的\(B\)取最大值
考虑可以先凑硬币,所有物品都最后买,统计一下答案
#include <algorithm>
#include <cstring>
#include <cstdio>
using namespace std;
const int N = 16;
const int M = N * N + 5;
int n, suma, sumb, t[N], lg[1 << N], a[N], b[N];
int cnta[1 << N], cntb[1 << N], f[1 << N][M];
int main() {
scanf("%d", &n); char s[10];
for(int i = 0; i < n; i ++) {
scanf("%s%d%d", s, a + i, b + i);
if(*s == 'R') t[i] = 0;
if(*s == 'B') t[i] = 1;
suma += a[i]; sumb += b[i];
}
for(int i = 0; i < n; i ++) {
lg[1 << i] = i;
}
for(int i = 1; i < (1 << n); i ++) {
cnta[i] = cnta[i & (i - 1)] + (t[lg[i & (-i)]] == 0);
cntb[i] = cntb[i & (i - 1)] + (t[lg[i & (-i)]] == 1);
}
memset(f, -1, sizeof f); f[0][0] = 0;
for(int S = 0; S < (1 << n); S ++) {
for(int j = 0; j <= 120; j ++) if(~ f[S][j]) {
for(int i = 0; i < n; i ++) if(!(S >> i & 1)) {
int &dp = f[S | (1 << i)][j + min(a[i], cnta[S])];
dp = max(dp, f[S][j] + min(b[i], cntb[S]));
}
}
}
int ans = 2e9;
for(int i = 0; i <= 120; i ++) {
if(~ f[(1 << n) - 1][i]) {
ans = min(ans, max(suma - i, sumb - f[(1 << n) - 1][i]));
}
}
printf("%d\n", ans + n);
return 0;
}
「CF744C」Hongcow Buys a Deck of Cards「状压 DP」的更多相关文章
- Codeforces 744C. Hongcow Buys a Deck of Cards(状压DP)
这题的难点在于状态的设计 首先显然是个状压,需要一维表示卡的状态,另一维如果设计成天数,难以知道当前的钱数,没法确定是否能够购买新的卡,如果设计成钱数,会发现状态数过多,空间与时间都无法承受.但是可以 ...
- codeforces 744C Hongcow Buys a Deck of Cards
C. Hongcow Buys a Deck of Cards time limit per test 2 seconds memory limit per test 256 megabytes in ...
- Codeforces 744C Hongcow Buys a Deck of Cards 状压dp (看题解)
Hongcow Buys a Deck of Cards 啊啊啊, 为什么我连这种垃圾dp都写不出来.. 不是应该10分钟就该秒掉的题吗.. 从dp想到暴力然后gg, 没有想到把省下的红色开成一维. ...
- Codeforces Round #385 (Div. 1) C. Hongcow Buys a Deck of Cards
地址:http://codeforces.com/problemset/problem/744/C 题目: C. Hongcow Buys a Deck of Cards time limit per ...
- 「状压DP」「暴力搜索」排列perm
「状压DP」「暴力搜索」排列 题目描述: 题目描述 给一个数字串 s 和正整数 d, 统计 sss 有多少种不同的排列能被 d 整除(可以有前导 0).例如 123434 有 90 种排列能被 2 整 ...
- Hongcow Buys a Deck of Cards CodeForces - 744C (状压)
大意: n个红黑卡, 每天可以选择领取一块红币一块黑币, 或者买一张卡, 第$i$张卡的花费红币数$max(r_i-A,0)$, 花费黑币数$max(b_i-B,0)$, A为当前红卡数, B为当前黑 ...
- Codeforces 745E Hongcow Buys a Deck of Cards 状压DP / 模拟退火
题意:现在有n张卡片(n <= 16), 每一轮你可以执行两种操作中的一种.1:获得一张红色令牌和一张蓝色令牌.2:购买一张卡片(如果可以买的话),购买的时候蓝色卡片可以充当蓝色令牌,红色同理, ...
- ☆ [POJ2411] Mondriaan's Dream 「状压DP」
传送门 >Here< 题意:用1*2的砖块铺满n*m的地板有几种方案 思路分析 状压经典题! 我们以$f[i][j]$作为状态,表示第i行之前全部填完并且第i行状态为j(状压)时的方案数. ...
- 「BZOJ 5010」「FJOI 2017」矩阵填数「状压DP」
题意 你有一个\(h\times w\)的棋盘,你需要在每个格子里填\([1, m]\)中的某个整数,且满足\(n\)个矩形限制:矩形的最大值为某定值.求方案数\(\bmod 10^9+7\) \(h ...
随机推荐
- Selenium-几种操作
元素定位之后就要对它进行操作了,常见的集中操作如下: click() 点击元素 eg.输入内容后,点击操作 send_keys("内容") 模拟按键输入 eg:百度输入框,输入内容 ...
- 201621123014《JAVA程序设计》第2周学习总结
1. 本周学习总结 引用数据类型:JAVA定义字符串实际上是创建字符串的引用,将引用指向需要的字符串. 字符串常量池:直接对引用赋值时,会先在字符串中搜索是否有这个对象,已有则不创建直接指向它. St ...
- curl常用命令行总结
curl 有时HTTP服务接口写完,需要验证下接口功能,这个使用用curl最合适了 curl 全称 command line url viewer curl www.taobao.com curl w ...
- 2017-2018-1 20179215《Linux内核原理与分析》第六周作业
一.实验部分:使用gdb跟踪分析一个系统调用内核函数(上周选择的那一个系统调用). [第一部分] 根据要求完成第一部分,步骤如下: ①更新menu代码到最新版 ②在原有代码中加入C函数.汇编函数 in ...
- JEECG datagrid 列表检索条件 添加下拉级联功能
$("#communityId").change( function(){ var id = $(this).children('option:selected').val(); ...
- 用NodeJS打造多人在线聊天室(NodeJS & SocketIO & Express & EJS & MongoDB & Gulp)
项目背景 这个项目主要是为了玩玩NodeJS,项目的方向大概是做出类似QQ的在线聊天系统.想要在线体验可以点击在线演示. 项目使用PM2进行部署和管理,功能在不断的迭代开发中.如果你觉得这个项目比较有 ...
- IronPython for ASP.NET 部署注意事项
用 IronPython for ASP.NET 开发的网站,在部署时,除了发布 bin 目录下的 IronPython.dll, IronMath.dll, Microsoft.Web.IronPy ...
- Poj 2853,2140 Sequence Sum Possibilities(因式分解)
一.Description Most positive integers may be written as a sum of a sequence of at least two consecuti ...
- css动画和渐变
变形: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 元素的变形:transform transform:none | <tra ...
- for循环及break和continue的区别
1.For循环 格式: for( 初始语句 ; 执行条件 ; 增量 ){ 循环体 } 执行顺序:1.初始语句 2.执行条件是否符合 3.循环体 4.增加增量 初始化语句只在循环开始前执行一次,每次 ...