多字段搜索(Multifield Search)

本文翻译自官方指南的Multifield Search一章。

查询很少是只拥有一个match查询子句的查询。我们经常需要对一个或者多个字段使用相同或者不同的查询字符串进行搜索,这意味着我们需要将多个查询子句和它们得到的相关度分值以一种有意义的方式进行合并。

也许我们正在寻找一本名为战争与和平的书,它的作者是Leo Tolstoy。也许我们正在使用"最少应该匹配(Minimum Should Match)"来搜索ES中的文档。另外我们也可能会寻找拥有名为John而姓为Smith的用户。

在本章中我们会讨论一些构建多字段搜索的工具,以及如何根据你的实际情况来决定使用哪种方案。

多个查询字符串(Multiple Query Strings)

处理字段查询最简单的方法是将搜索词条对应到特定的字段上。如果我们知道战争与和平是标题,而Leo Tolstoy是作者,那么我们可以简单地将每个条件当做一个match子句,然后通过bool查询将它们合并:

GET /_search
{
"query": {
"bool": {
"should": [
{ "match": { "title": "War and Peace" }},
{ "match": { "author": "Leo Tolstoy" }}
]
}
}
}

bool查询采用了一种"匹配越多越好(More-matches-is-better)"的方法,因此每个match子句的分值会被累加来得到文档最终的_score。匹配两个子句的文档相比那些只匹配一个子句的文档的分值会高一些。

当然,你并不是只能使用match子句:bool查询可以包含任何其他类型的查询,包括其它的bool查询。我们可以添加一个子句来指定我们希望的译者:

GET /_search
{
"query": {
"bool": {
"should": [
{ "match": { "title": "War and Peace" }},
{ "match": { "author": "Leo Tolstoy" }},
{ "bool": {
"should": [
{ "match": { "translator": "Constance Garnett" }},
{ "match": { "translator": "Louise Maude" }}
]
}}
]
}
}
}

我们为什么将译者的查询子句放在一个单独的bool查询中?所有的4个match查询都是should子句,那么为何不将译者的查询子句和标题及作者的查询子句放在同一层次上呢?

答案在于分值是如何计算的。bool查询会运行每个match查询,将它们的分值相加,然后乘以匹配的查询子句的数量,最后除以所有查询子句的数量。相同层次的每个子句都拥有相同的权重。在上述查询中,bool查询中包含的译者查询子句只占了总分值的三分之一。如果我们将译者查询子句放到和标题及作者相同的层次上,就会减少标题和作者子句的权重,让它们各自只占四分之一。

设置子句优先级

上述查询中每个子句占有三分之一的权重也许并不是我们需要的。相比译者字段,我们可能对标题和作者字段更有兴趣。我们对查询进行调整来让标题和作者相对更重要。

在所有可用措施中,我们可以采用的最简单的方法是boost参数。为了增加titleauthor字段的权重,我们可以给它们一个大于1boost值:

GET /_search
{
"query": {
"bool": {
"should": [
{ "match": {
"title": {
"query": "War and Peace",
"boost":
}}},
{ "match": {
"author": {
"query": "Leo Tolstoy",
"boost":
}}},
{ "bool": {
"should": [
{ "match": { "translator": "Constance Garnett" }},
{ "match": { "translator": "Louise Maude" }}
]
}}
]
}
}
}

以上的title和k字段的boost值为2。 嵌套的bool查询自居的默认boost值为k。

通过试错(Trial and Error)的方式可以确定"最佳"的boost值:设置一个boost值,执行测试查询,重复这个过程。一个合理boost值的范围在110之间,也可能是15。比它更高的值的影响不会起到很大的作用,因为分值会被规范化(Normalized)。

单一查询字符串(Single Query String)

bool查询是多字段查询的中流砥柱。在很多场合下它都能很好地工作,特别是当你能够将不同的查询字符串映射到不同的字段时。

问题在于,现在的用户期望能够在一个地方输入所有的搜索词条,然后应用能够知道如何为他们得到正确的结果。所以当我们把含有多个字段的搜索表单称为高级搜 索(Advanced Search)时,是有一些讽刺意味的。高级搜索虽然对用户而言会显得更"高级",但是实际上它的实现方式更简单。

对于多词,多字段查询并没有一种万能的方法。要得到最佳的结果,你需要了解你的数据以及如何使用恰当的工具。

了解你的数据

当用户的唯一输入就是一个查询字符串时,你会经常碰到以下三种情况:

最佳字段(Best fields)

当搜索代表某些概念的单词时,例如"brown fox",几个单词合在一起表达出来的意思比单独的单词更多。类似title和body的字段,尽管它们是相关联的,但是也是互相竞争着的。文档在相同的 字段中应该有尽可能多的单词(译注:搜索的目标单词),文档的分数应该来自拥有最佳匹配的字段。

多数字段(Most fields)

一个用来调优相关度的常用技术是将相同的数据索引到多个字段中,每个字段拥有自己的分析链(Analysis Chain)。

主要字段会含有单词的词干部分,同义词和消除了变音符号的单词。它用来尽可能多地匹配文档。

相同的文本可以被索引到其它的字段中来提供更加精确的匹配。一个字段或许会包含未被提取词干的单词,另一个字段是包含了变音符号的单词,第三个字段则使用shingle来提供关于单词邻近度(Word Proximity)的信息。

以上这些额外的字段扮演者signal的角色,用来增加每个匹配的文档的相关度分值。越多的字段被匹配则意味着文档的相关度越高。

跨字段(Cross fields)

对于一些实体,标识信息会在多个字段中出现,每个字段中只含有一部分信息:

  • Person:first_name 和 last_name
  • Book:titleauthor 和 description
  • Address:streetcitycountry 和 postcode

此时,我们希望在任意字段中找到尽可能多的单词。我们需要在多个字段中进行查询,就好像这些字段是一个字段那样。


以上这些都是多词,多字段查询,但是每种都需要使用不同的策略。我们会在本章剩下的部分解释每种策略。

from:http://blog.csdn.net/dm_vincent/article/details/41800351#t4

[Elasticsearch2.x] 多字段搜索 (一) - 多个及单个查询字符串 <译>的更多相关文章

  1. [Elasticsearch] 多字段搜索 (一) - 多个及单个查询字符串

    多字段搜索(Multifield Search) 本文翻译自官方指南的Multifield Search一章. 查询很少是只拥有一个match查询子句的查询.我们经常需要对一个或者多个字段使用相同或者 ...

  2. [Elasticsearch2.x] 多字段搜索 (三) - multi_match查询和多数字段 <译>

    multi_match查询 multi_match查询提供了一个简便的方法用来对多个字段执行相同的查询. NOTE 存在几种类型的multi_match查询,其中的3种正好和在“了解你的数据”一节中提 ...

  3. [Elasticsearch2.x] 多字段搜索 (二) - 最佳字段查询及其调优 <译>

    最佳字段(Best Fields) 假设我们有一个让用户搜索博客文章的网站,就像这两份文档一样: PUT /my_index/my_type/ { "title": "Q ...

  4. [Elasticsearch] 全文搜索 (一) 基础概念和match查询

    全文搜索(Full Text Search) 现在我们已经讨论了搜索结构化数据的一些简单用例,是时候开始探索全文搜索了 - 如何在全文字段中搜索来找到最相关的文档. 对于全文搜索而言,最重要的两个方面 ...

  5. 012-elasticsearch5.4.3【五】-搜索API【一】搜索匹配所有matchAllQuery、全文查询[matchQuery、multiMatchQuery、commonTermsQuery、queryStringQuery、simpleQueryStringQuery]

    一.概述 查询所使用的 QueryBuilders来源于以下 import static org.elasticsearch.index.query.QueryBuilders.*; 请注意,您可以使 ...

  6. ElasticSearch 2 (15) - 深入搜索系列之多字段搜索

    ElasticSearch 2 (15) - 深入搜索系列之多字段搜索 摘要 查询很少是简单的一句话匹配(one-clause match)查询.很多时候,我们需要用相同或不同的字符串查询1个或多个字 ...

  7. elasticsearch多字段搜索

    https://blog.csdn.net/Ricky110/article/details/78888711 多字段搜索多字符串查询boost 参数 “最佳” 值,较为简单的方式就是不断试错,比较合 ...

  8. Elasticsearch 多字段搜索

    查询很少是对一个字段做 match 查询,通常都是一个 query 查询多个字段,比如一个 doc 有 title.content.pagetag 等文本字段,要在这些字段查询含多个 term 的 q ...

  9. Elasticsearch 全字段搜索_all,query_string查询,不进行分词

    最近在使用ELasitcsearch的时候,需要用到关键字搜索,因为是全字段搜索,就需要使用_all字段的query_string进行搜索. 但是在使用的时候,遇到问题了.我们的业务并不需要分词,我在 ...

随机推荐

  1. Difference between menu item types; Display, Output and Action in Dynamics Ax

    Difference between menu item types; Display, Output and Action in Dynamics Ax Developers often ask m ...

  2. Nodejs+MongoDB+Bootstrap+esj搭建的个人简易博客

    github:https://github.com/yehuimmd/myNodeBloy Nodejs+MongoDB+jQuery+Bootstrap-esj搭建的个人简易博客 主要功能 前台 : ...

  3. python递归中的return"陷阱"

    在做一道练习题(参照下篇博文<在当前目录下递归的查找包含指定字符串的文件>)的时候,发现函数中的return的值竟然是None,百思不得其解,尝试化繁为简,用以下的简单的代码验证了一下 问 ...

  4. MySQL相关日志介绍

    1.MySQL中主要日志如下: ① 错误日志(Log Error) ② 查询日志(Query Log) ③ 二进制日志(Binary Log) 2.相关日志的作用: 1) 错误日志(Error Log ...

  5. UVA - 1603 Square Destroyer (DLX可重复覆盖+IDA*)

    题目链接 给你一个n*n的由火柴组成的正方形网格,从中预先拿掉一些火柴,问至少还需要拿掉多少火柴才能破坏掉所有的正方形. 看到这道题,我第一反应就是——把每根火柴和它能破坏掉的正方形连边,不就是个裸的 ...

  6. COGS1516. 棋盘上的车

    [题目描述] 在n*n(n≤20)的方格棋盘上放置n 个车,求使它们不能互相攻击的方案总数. [输入格式] 一行一个正整数n. [输出格式] 一行一个正整数,即方案总数. [样例输入] 3 [样例输出 ...

  7. 杂项之python利用pycrypto实现RSA

    杂项之python利用pycrypto实现RSA 本节内容 pycrypto模块简介 RSA的公私钥生成 RSA使用公钥加密数据 RSA使用私钥解密密文 破解博客园登陆 pycrypto模块简介 py ...

  8. Js中的prototype的用法二

    用过JavaScript的同学们肯定都对prototype如雷贯耳,但是这究竟是个什么东西却让初学者莫衷一是,只知道函数都会有一个prototype属性,可以为其添加函数供实例访问,其它的就不清楚了, ...

  9. Mxgraph使用总结二

    1 新建画板,画板相关操作 var container = document.getElementById("main"); //设置背景样式 container.style.ba ...

  10. Python函数-callable()

    callable(object) 作用: 检查对象object是否可调用.如果返回True,object仍然可能调用失败:但如果返回False,调用对象ojbect绝对不会成功. 注意: 类是可调用的 ...