传送门

题目

Sasha has an array of integers a1, a2, ..., an. You have to perform m queries. There might be queries of two types:

  1. 1 l r x — increase all integers on the segment from l to r by values x;
  2. 2 l r — find , where f(x) is the x-th Fibonacci number. As this number may be large, you only have to find it modulo 109 + 7.

In this problem we define Fibonacci numbers as follows: f(1) = 1, f(2) = 1, f(x) = f(x - 1) + f(x - 2) for all x > 2.

Sasha is a very talented boy and he managed to perform all queries in five seconds. Will you be able to write the program that performs as well as Sasha?

Input

The first line of the input contains two integers n and m (1 ≤ n ≤ 100 000, 1 ≤ m ≤ 100 000) — the number of elements in the array and the number of queries respectively.

The next line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 109).

Then follow m lines with queries descriptions. Each of them contains integers tpi, li, ri and may be xi (1 ≤ tpi ≤ 2, 1 ≤ li ≤ ri ≤ n, 1 ≤ xi ≤ 109). Here tpi = 1 corresponds to the queries of the first type and tpi corresponds to the queries of the second type.

It's guaranteed that the input will contains at least one query of the second type.

Output

For each query of the second type print the answer modulo 109 + 7.

题目大意

给你一个长度为n的数列an,有两种操作

1、将L到R的ai加上X

2、询问L到R之间,f(aL)+f(aL+1)+……+f(aR)的和

f是斐波那契函数

分析

我们可以将斐波那契数转化成它所对应的矩阵,对于每一次加x就是给原来矩阵乘上斐波那契矩阵的x次方。将为赋值的矩阵全部初始化为单位矩阵,然后进行朴素的线段树为何两节点之和即可。

代码

#pragma G++ optimize (2)
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<queue>
#include<ctime>
#include<vector>
#include<set>
#include<map>
#include<stack>
using namespace std;
#define rri register int
const int mod=1e9+;
struct mat {
int g[][];
};
mat d[],one,per;
mat add[];
inline mat operator * (const mat a,const mat b){
mat c;
c.g[][]=c.g[][]=c.g[][]=c.g[][]=;
for(rri i=;i<=;++i)
for(rri k=;k<=;++k)
for(rri j=;j<=;++j)
c.g[i][j]=(c.g[i][j]+(long long)a.g[i][k]*b.g[k][j]%mod)%mod;
return c;
}
inline mat operator + (const mat a,const mat b){
mat c;
for(rri i=;i<=;++i)
for(rri j=;j<=;++j)
c.g[i][j]=(a.g[i][j]+b.g[i][j])%mod;
return c;
}
inline mat pw(mat a,int p){
mat res=a;
p-=;
while(p){
if(p&)res=res*a;
a=a*a;
p>>=;
}
return res;
}
inline int read(){
int x=,f=;char s=getchar();
while(s<''||s>''){if(s=='-')f=-;s=getchar();}
while(s>=''&&s<=''){x=(x<<)+(x<<)+(s-'');s=getchar();}
return f*x;
}
inline void build(int le,int ri,int pl,mat k,int wh){
add[wh]=per;
if(le==ri){
d[wh]=k;
return;
}
int mid=(le+ri)>>;
if(mid>=pl)build(le,mid,pl,k,wh<<);
else build(mid+,ri,pl,k,wh<<|);
d[wh]=d[wh<<]+d[wh<<|];
}
inline void pd(int wh){
if(add[wh].g[][]!=||add[wh].g[][]!=||
add[wh].g[][]!=||add[wh].g[][]!=){
add[wh<<]=add[wh<<]*add[wh];
add[wh<<|]=add[wh<<|]*add[wh];
d[wh<<]=d[wh<<]*add[wh];
d[wh<<|]=d[wh<<|]*add[wh];
add[wh]=per;
}
}
inline void update(int le,int ri,int x,int y,mat k,int wh){
if(le>=x&&ri<=y){
add[wh]=add[wh]*k;
d[wh]=d[wh]*k;
return;
}
int mid=(le+ri)>>;
pd(wh);
if(mid>=x)update(le,mid,x,y,k,wh<<);
if(mid<y)update(mid+,ri,x,y,k,wh<<|);
d[wh]=d[wh<<]+d[wh<<|];
}
inline int q(int le,int ri,int x,int y,int wh){
if(le>=x&&ri<=y)return d[wh].g[][]%mod;
int mid=(le+ri)>>,ans=;
pd(wh);
if(mid>=x)ans=(ans+q(le,mid,x,y,wh<<))%mod;
if(mid<y)ans=(ans+q(mid+,ri,x,y,wh<<|))%mod;
d[wh]=d[wh<<]+d[wh<<|];
return ans%mod;
}
int main()
{ int n,m,x,l,r,k;
one.g[][]=,one.g[][]=one.g[][]=one.g[][]=;
per.g[][]=per.g[][]=,per.g[][]=per.g[][]=;
n=read(),m=read();
for(rri i=;i<=n;++i){
x=read();
build(,n,i,pw(one,x),);
}
for(rri i=;i<=m;++i){
k=read();
if(k==){
l=read(),r=read(),x=read();
update(,n,l,r,pw(one,x),);
}else {
l=read(),r=read();
printf("%d\n",q(,n,l,r,)%mod);
}
}
return ;
}

718C Sasha and Array的更多相关文章

  1. CodeForces 718C Sasha and Array

    线段树. 线段树维护区间矩阵和,操作都是最简单的线段树.$lazy$标记不要记录乘了几次,直接记录乘了几次之后的矩阵就可以了,不然每次下传的时候再算一遍时间复杂度会提高. #pragma commen ...

  2. Codeforces 718C. Sasha and Array(线段树)

    传送门 解题思路: 这道题给了我们一个崭新的角度来看线段树. 我们常常使用的线段树是维护区间的函数的. 这里呢,提示我们线段树其实还可以维护递推. 美好的矩阵递推性质支持了这一功能. 或者说,对于递推 ...

  3. [CF 718C] Sasha and Array

    传送门 Solution 用线段树维护矩阵 第一个操作相当于区间乘 第二个操作相当于区间求和 Code  #include<bits/stdc++.h> #define ll long l ...

  4. 【Codeforces718C】Sasha and Array 线段树 + 矩阵乘法

    C. Sasha and Array time limit per test:5 seconds memory limit per test:256 megabytes input:standard ...

  5. codeforces 719E E. Sasha and Array(线段树)

    题目链接: E. Sasha and Array time limit per test 5 seconds memory limit per test 256 megabytes input sta ...

  6. Sasha and Array

    Sasha and Array time limit per test 5 seconds memory limit per test 256 megabytes input standard inp ...

  7. 【codeforces 718 C&D】C. Sasha and Array&D. Andrew and Chemistry

    C. Sasha and Array 题目大意&题目链接: http://codeforces.com/problemset/problem/718/C 长度为n的正整数数列,有m次操作,$o ...

  8. CF719E. Sasha and Array [线段树维护矩阵]

    CF719E. Sasha and Array 题意: 对长度为 n 的数列进行 m 次操作, 操作为: a[l..r] 每一项都加一个常数 C, 其中 0 ≤ C ≤ 10^9 求 F[a[l]]+ ...

  9. Codeforces Round #373 (Div. 2) E. Sasha and Array 线段树维护矩阵

    E. Sasha and Array 题目连接: http://codeforces.com/contest/719/problem/E Description Sasha has an array ...

随机推荐

  1. AMD 规范使用总结

    转自:http://www.jianshu.com/p/9b44a1fa8a96 AMD模式 define和require这两个定义模块.调用模块的方法,合称为AMD模式.它的模块定义的方法非常清晰, ...

  2. 使用swing构建一个界面(包含flow ,Border,Grid,card ,scroll布局)

    package UI; import java.awt.BorderLayout;import java.awt.CardLayout;import java.awt.Cursor;import ja ...

  3. Python函数-compile()

    compile(source, filename, mode[, flags[, dont_inherit]]) 作用: 将source编译为代码或者AST对象.代码对象能够通过exec语句来执行或者 ...

  4. 关于C语言字符串函数使用的一点心得

    就字符串的拼接函数为例strcat. 原型:extern char *strcat(char *dest,char *src);用法:#include <string.h> 功能:把src ...

  5. Python 函数之定义函数

    在Python中,定义一个函数要使用def语句,依次写出函数名.括号.括号中的参数和冒号: 然后,在缩进块中编写函数体,函数的返回值用return语句返回. 1.定义一个函数 def myfirst( ...

  6. python3 之 格式化json

    import json json_string = None with open("json_file.json") as f: json_string = f.read() tr ...

  7. Poj 1631 Bridging signals(二分+DP 解 LIS)

    题意:题目很难懂,题意很简单,求最长递增子序列LIS. 分析:本题的最大数据40000,多个case.用基础的O(N^2)动态规划求解是超时,采用O(n*log2n)的二分查找加速的改进型DP后AC了 ...

  8. php system()

    学习源头: https://blog.csdn.net/ltx06/article/details/53992905 system(“nohup ./test.py $s &”); 这个不会在 ...

  9. java继承初级

    总结:重写方法,方法体内容不同. 还有子类都不能加public.它表示公共,一个程序只能有一个公共类 package com.sa; public class Ac { public void rea ...

  10. HTML5一些元素的整理

    address元素: 定义和用法 <address> 标签定义文档或文章的作者/拥有者的联系信息. 如果 <address> 元素位于 <body> 元素内,则它表 ...