传送门

题目

Sasha has an array of integers a1, a2, ..., an. You have to perform m queries. There might be queries of two types:

  1. 1 l r x — increase all integers on the segment from l to r by values x;
  2. 2 l r — find , where f(x) is the x-th Fibonacci number. As this number may be large, you only have to find it modulo 109 + 7.

In this problem we define Fibonacci numbers as follows: f(1) = 1, f(2) = 1, f(x) = f(x - 1) + f(x - 2) for all x > 2.

Sasha is a very talented boy and he managed to perform all queries in five seconds. Will you be able to write the program that performs as well as Sasha?

Input

The first line of the input contains two integers n and m (1 ≤ n ≤ 100 000, 1 ≤ m ≤ 100 000) — the number of elements in the array and the number of queries respectively.

The next line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 109).

Then follow m lines with queries descriptions. Each of them contains integers tpi, li, ri and may be xi (1 ≤ tpi ≤ 2, 1 ≤ li ≤ ri ≤ n, 1 ≤ xi ≤ 109). Here tpi = 1 corresponds to the queries of the first type and tpi corresponds to the queries of the second type.

It's guaranteed that the input will contains at least one query of the second type.

Output

For each query of the second type print the answer modulo 109 + 7.

题目大意

给你一个长度为n的数列an,有两种操作

1、将L到R的ai加上X

2、询问L到R之间,f(aL)+f(aL+1)+……+f(aR)的和

f是斐波那契函数

分析

我们可以将斐波那契数转化成它所对应的矩阵,对于每一次加x就是给原来矩阵乘上斐波那契矩阵的x次方。将为赋值的矩阵全部初始化为单位矩阵,然后进行朴素的线段树为何两节点之和即可。

代码

#pragma G++ optimize (2)
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<queue>
#include<ctime>
#include<vector>
#include<set>
#include<map>
#include<stack>
using namespace std;
#define rri register int
const int mod=1e9+;
struct mat {
int g[][];
};
mat d[],one,per;
mat add[];
inline mat operator * (const mat a,const mat b){
mat c;
c.g[][]=c.g[][]=c.g[][]=c.g[][]=;
for(rri i=;i<=;++i)
for(rri k=;k<=;++k)
for(rri j=;j<=;++j)
c.g[i][j]=(c.g[i][j]+(long long)a.g[i][k]*b.g[k][j]%mod)%mod;
return c;
}
inline mat operator + (const mat a,const mat b){
mat c;
for(rri i=;i<=;++i)
for(rri j=;j<=;++j)
c.g[i][j]=(a.g[i][j]+b.g[i][j])%mod;
return c;
}
inline mat pw(mat a,int p){
mat res=a;
p-=;
while(p){
if(p&)res=res*a;
a=a*a;
p>>=;
}
return res;
}
inline int read(){
int x=,f=;char s=getchar();
while(s<''||s>''){if(s=='-')f=-;s=getchar();}
while(s>=''&&s<=''){x=(x<<)+(x<<)+(s-'');s=getchar();}
return f*x;
}
inline void build(int le,int ri,int pl,mat k,int wh){
add[wh]=per;
if(le==ri){
d[wh]=k;
return;
}
int mid=(le+ri)>>;
if(mid>=pl)build(le,mid,pl,k,wh<<);
else build(mid+,ri,pl,k,wh<<|);
d[wh]=d[wh<<]+d[wh<<|];
}
inline void pd(int wh){
if(add[wh].g[][]!=||add[wh].g[][]!=||
add[wh].g[][]!=||add[wh].g[][]!=){
add[wh<<]=add[wh<<]*add[wh];
add[wh<<|]=add[wh<<|]*add[wh];
d[wh<<]=d[wh<<]*add[wh];
d[wh<<|]=d[wh<<|]*add[wh];
add[wh]=per;
}
}
inline void update(int le,int ri,int x,int y,mat k,int wh){
if(le>=x&&ri<=y){
add[wh]=add[wh]*k;
d[wh]=d[wh]*k;
return;
}
int mid=(le+ri)>>;
pd(wh);
if(mid>=x)update(le,mid,x,y,k,wh<<);
if(mid<y)update(mid+,ri,x,y,k,wh<<|);
d[wh]=d[wh<<]+d[wh<<|];
}
inline int q(int le,int ri,int x,int y,int wh){
if(le>=x&&ri<=y)return d[wh].g[][]%mod;
int mid=(le+ri)>>,ans=;
pd(wh);
if(mid>=x)ans=(ans+q(le,mid,x,y,wh<<))%mod;
if(mid<y)ans=(ans+q(mid+,ri,x,y,wh<<|))%mod;
d[wh]=d[wh<<]+d[wh<<|];
return ans%mod;
}
int main()
{ int n,m,x,l,r,k;
one.g[][]=,one.g[][]=one.g[][]=one.g[][]=;
per.g[][]=per.g[][]=,per.g[][]=per.g[][]=;
n=read(),m=read();
for(rri i=;i<=n;++i){
x=read();
build(,n,i,pw(one,x),);
}
for(rri i=;i<=m;++i){
k=read();
if(k==){
l=read(),r=read(),x=read();
update(,n,l,r,pw(one,x),);
}else {
l=read(),r=read();
printf("%d\n",q(,n,l,r,)%mod);
}
}
return ;
}

718C Sasha and Array的更多相关文章

  1. CodeForces 718C Sasha and Array

    线段树. 线段树维护区间矩阵和,操作都是最简单的线段树.$lazy$标记不要记录乘了几次,直接记录乘了几次之后的矩阵就可以了,不然每次下传的时候再算一遍时间复杂度会提高. #pragma commen ...

  2. Codeforces 718C. Sasha and Array(线段树)

    传送门 解题思路: 这道题给了我们一个崭新的角度来看线段树. 我们常常使用的线段树是维护区间的函数的. 这里呢,提示我们线段树其实还可以维护递推. 美好的矩阵递推性质支持了这一功能. 或者说,对于递推 ...

  3. [CF 718C] Sasha and Array

    传送门 Solution 用线段树维护矩阵 第一个操作相当于区间乘 第二个操作相当于区间求和 Code  #include<bits/stdc++.h> #define ll long l ...

  4. 【Codeforces718C】Sasha and Array 线段树 + 矩阵乘法

    C. Sasha and Array time limit per test:5 seconds memory limit per test:256 megabytes input:standard ...

  5. codeforces 719E E. Sasha and Array(线段树)

    题目链接: E. Sasha and Array time limit per test 5 seconds memory limit per test 256 megabytes input sta ...

  6. Sasha and Array

    Sasha and Array time limit per test 5 seconds memory limit per test 256 megabytes input standard inp ...

  7. 【codeforces 718 C&D】C. Sasha and Array&D. Andrew and Chemistry

    C. Sasha and Array 题目大意&题目链接: http://codeforces.com/problemset/problem/718/C 长度为n的正整数数列,有m次操作,$o ...

  8. CF719E. Sasha and Array [线段树维护矩阵]

    CF719E. Sasha and Array 题意: 对长度为 n 的数列进行 m 次操作, 操作为: a[l..r] 每一项都加一个常数 C, 其中 0 ≤ C ≤ 10^9 求 F[a[l]]+ ...

  9. Codeforces Round #373 (Div. 2) E. Sasha and Array 线段树维护矩阵

    E. Sasha and Array 题目连接: http://codeforces.com/contest/719/problem/E Description Sasha has an array ...

随机推荐

  1. 单链表输出倒数第k个结点值(栈实现)

    思路1:定义两个指针变量p和q,初始时均指向头节点的下一个节点(链表的第一个节点),p指针沿链表移动: 当p指针移动到第k个节点时,q指针开始与p指针同步移动, 当p指针移动到最后一个节点时,q指针所 ...

  2. Mac 系统安装redis服务

    1.首先去http://www.redis.io/下载最新的redis文件,现在最新的是redis-2.8.19 2.进行解压缩 tar -zxvf redis-2.8.19.tar.gz 3.移动重 ...

  3. 完成一个servlet 就要在web.xml里面配一个映射,这样就有一个路径供我们 使用????? servlet从页面接收值?

    最后,最容易忘记的是:在dao层中 调用xml里的删除sql语句 后面需要人为加上事务提交.一定要! sqlSession.commit();//jdbc是自动提交,但是mybatis中不是自动提交的 ...

  4. hdu--1878--欧拉回路(并查集判断连通,欧拉回路模板题)

     题目链接 /* 模板题-------判断欧拉回路 欧拉路径,无向图 1判断是否为连通图, 2判断奇点的个数为0 */ #include <iostream> #include <c ...

  5. New Concept English three (57)

    28w/m 54errors I stopped to let the car cool off and to study the map. I had expected to be near my ...

  6. C++中头文件、源文件之间的区别与联系

    .h头文件和.cpp文件的区别 疑惑1:.h文件能够编写main函数吗? 实验: 编写test.h文件,里面包含main函数 若直接编译g++ test.h -o test,通过file命令 file ...

  7. Linux之时间、地点、人物、事件、情节

    时间 date 显示当前时间 time cmd 显示 cmd的运行时间 地点 locate 根据文件名,迅速找到文件.基于系统构建的索引 find 根据各种规则找到文件,更强大,但比较慢 wherei ...

  8. 扒站工具Teleport Pro教程

    1.下载软件 http://www.jb51.net/softs/44134.html 2.安装 3.界面 先点开帮助点注册(类似于破解要不全站扒不全) 下面请看ppt, http://www.doc ...

  9. bae3.0第四步 第一个polls系统

    1.创建自己的app 进入新建的blog工程目录,执行其下面的manage.py来创建polls应用,命令为: python manage.py startapp polls2.定义app的model ...

  10. Java-API:java.lang百科

    ylbtech-Java-API:java.lang百科 java.lang是提供利用 Java 编程语言进行程序设计的基础类.最重要的类是Object(它是类层次结构的根)和 Class(它的实例表 ...