\(\color{#0066ff}{ 题目描述 }\)

给定一个正整数\(N(N\le2^{31}-1)\)

\(ans_1=\sum_{i=1}^n\varphi(i)\)

\(ans_2=\sum_{i=1}^n \mu(i)\)

\(\color{#0066ff}{输入格式}\)

一共T+1行 第1行为数据组数T(T<=10) 第2~T+1行每行一个非负整数N,代表一组询问

\(\color{#0066ff}{输出格式}\)

一共T行,每行两个用空格分隔的数ans1,ans2

\(\color{#0066ff}{输入样例}\)

6
1
2
8
13
30
2333

\(\color{#0066ff}{输出样例}\)

1 1
2 0
22 -2
58 -3
278 -3
1655470 2

\(\color{#0066ff}{数据范围与提示}\)

none

\(\color{#0066ff}{ 题解 }\)

可以用min_25筛写

对于\(\varphi\)

要拆成两个,一个0次项,一个1次项

在收集答案的时候直接加它们两个的差即可

对于\(\mu\)

因为只要指数超过1,就是0了,没用的,不同统计,直接统计1次的就行

#include<bits/stdc++.h>
#define LL long long
LL in() {
char ch; LL x = 0, f = 1;
while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
for(x = ch ^ 48; isdigit(ch = getchar()); x = (x << 1) + (x << 3) + (ch ^ 48));
return x * f;
}
const int maxn = 2e6 + 10;
LL g0[maxn], g1[maxn], a[maxn];
int pri[maxn];
int m, sqt, n, tot;
int getid(LL x) { return x <= sqt? x : m - n / x + 1; }
LL getphi(LL a, int b) {
if(a < pri[b]) return 0;
LL ans = (g1[getid(a)] - g1[getid(pri[b - 1])]) - (g0[getid(a)] - g0[getid(pri[b - 1])]);
for(int i = b; i <= tot && (LL)pri[i] * pri[i] <= a; i++)
for(LL x = pri[i], f = pri[i] - 1; x * pri[i] <= a; x *= pri[i], f *= pri[i])
//phi[p^2]的贡献是p*(p-1)
ans += (getphi(a / x, i + 1) * f + f * pri[i]);
return ans;
}
LL getmu(LL a, int b) {
if(a < pri[b]) return 0;
LL ans = -g0[getid(a)] + g0[getid(pri[b - 1])];
//只需枚举质数,次数就是1即可
for(int i = b; i <= tot && (LL)pri[i] * pri[i] <= a; i++)
//乘的那个f是-1,所以直接减,加的那个f是平方项=0, 不用管
ans -= getmu(a / pri[i], i + 1);
return ans;
}
int main() {
for(int T = in(); T --> 0;) {
n = in();
sqt = sqrt(n);
m = tot = 0;
for(int i = 1; i <= n; i = a[m] + 1)
a[++m] = n / (n / i), g0[m] = a[m] - 1, g1[m] = a[m] * (a[m] + 1) / 2 - 1;
for(int i = 2; i <= sqt; i++) {
if(g0[i] != g0[i - 1]) {
LL sqr = i * i;
pri[++tot] = i;
for(int j = m; a[j] >= sqr; j--) {
int id = getid(a[j] / i);
g0[j] -= g0[id] - g0[i - 1];
g1[j] -= i * (g1[id] - g1[i - 1]);
}
}
}
printf("%lld %lld\n", getphi(n, 1) + 1, getmu(n, 1) + 1);
}
return 0;
}

P4213 【模板】杜教筛(Sum) min_25筛的更多相关文章

  1. 【51NOD 1847】奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数)

    [51NOD 1847]奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数) 题面 51NOD \[\sum_{i=1}^n\sum_{j=1}^nsgcd(i,j)^k\] 其中\( ...

  2. 【LOJ#572】Misaka Network 与求和(莫比乌斯反演,杜教筛,min_25筛)

    [LOJ#572]Misaka Network 与求和(莫比乌斯反演,杜教筛,min_25筛) 题面 LOJ \[ans=\sum_{i=1}^n\sum_{j=1}^n f(gcd(i,j))^k\ ...

  3. [模板] 杜教筛 && bzoj3944-Sum

    杜教筛 浅谈一类积性函数的前缀和 - skywalkert's space - CSDN博客 杜教筛可以在\(O(n^{\frac 23})\)的时间复杂度内利用卷积求出一些积性函数的前缀和. 算法 ...

  4. luoguP4213 [模板]杜教筛

    https://www.luogu.org/problemnew/show/P4213 同 bzoj3944 考虑用杜教筛求出莫比乌斯函数前缀和,第二问随便过,第一问用莫比乌斯反演来做,中间的整除分块 ...

  5. LOJ572. 「LibreOJ Round #11」Misaka Network 与求和 [莫比乌斯反演,杜教筛,min_25筛]

    传送门 思路 (以下令\(F(n)=f(n)^k\)) 首先肯定要莫比乌斯反演,那么可以推出: \[ ans=\sum_{T=1}^n \lfloor\frac n T\rfloor^2\sum_{d ...

  6. BZOJ.3944.Sum(Min_25筛)

    BZOJ 洛谷 不得不再次吐槽洛谷数据好水(连\(n=0,2^{31}-1\)都没有). \(Description\) 给定\(n\),分别求\[\sum_{i=1}^n\varphi(i),\qu ...

  7. 洛谷P4213(杜教筛)

    #include <bits/stdc++.h> using namespace std; typedef long long LL; const int maxn = 3e6 + 3; ...

  8. LG4213 【模板】杜教筛(Sum)和 BZOJ4916 神犇和蒟蒻

    P4213 [模板]杜教筛(Sum) 题目描述 给定一个正整数$N(N\le2^{31}-1)$ 求 $$ans_1=\sum_{i=1}^n\varphi(i)$$ $$ans_2=\sum_{i= ...

  9. min_25筛入门

    目录 1.什么是min_25筛 2.前置知识 2.1.数论函数 2.2.埃拉托色尼筛 2.3.欧拉筛 3.min_25筛 3.1.计算质数贡献 3.2.计算总贡献 3.3.实现 4.例题 4.1.[L ...

随机推荐

  1. DCloud-流应用:杂项

    ylbtech-DCloud-流应用:杂项 1.返回顶部   2.返回顶部   3.返回顶部   4.返回顶部   5.返回顶部     6.返回顶部   7.返回顶部   8.返回顶部   9.返回 ...

  2. 2015.3.31不使用debug/X86文件夹方式解决64/32位问题

    传统方法:在解决方案-配置管理器-新建X86平台可以解决32位兼容问题,但是Debug目录下会多出X86文件夹.不方便 另一种方法:在项目名称-属性-生成-目标平台-x86也能解决问题,而且不出现X8 ...

  3. How to clear fmadm log or FMA faults log (ZT)

    Here are the step by step of clearing the FMA faults on most of Oracle/Sun server. Work perfectly on ...

  4. 问题:web.net页面超时;结果:设置ASP.NET页面的运行超时时间详细到单个页面及站点

    设置ASP.NET页面的运行超时时间详细到单个页面及站点 这篇文章主要介绍了如何设置ASP.NET页面的运行超时时间,包括全局超时时间.单个站点超时时间.单个页面请求超时时间,需要的朋友可以参考下 全 ...

  5. ABP系统设置

    代码分析 在abp中添加系统设置,都是在模块的预初始化方法中添加的. Configuration.Settings.Providers.Add<EmailSettingProvider>( ...

  6. SQLServer数据库中开启CDC导致事务日志空间被占满的原因

    SQLServer数据库中开启CDC导致事务日志空间被占满的原因 转载  2017-04-01   投稿:mrr    我要评论 这篇文章主要介绍了SQLServer数据库中开启CDC导致事务日志空间 ...

  7. NSURLConnection基本用法(苹果原生)

    一.NSURLConnection的常用类 (1)NSURL:请求地址 (2)NSURLRequest/NSMutableURLRequest:封装一个请求,保存发给服务器的全部数据,包括一个NSUR ...

  8. opencv 美白磨皮人脸检测<转>

    1. 简介 这学期的计算机视觉课,我们组的课程项目为“照片自动美化”,其中我负责的模块为人脸检测与自动磨皮.功能为:用户上传一张照片,自动检测并定位出照片中的人脸,将照片中所有的人脸进行“磨皮”处理, ...

  9. 4-3 set与delete命令的使用_(有一处打点 内容不确定)

    那么既然有create创建操作,那么也就有改操作,也就是我们平时所说的增删改.它使用的是set命令去修改它的节点. set path data [version] verision是可以写也可以不写. ...

  10. ServerSocket的建立和使用

    -------------siwuxie095 工程名:TestMyServerSocket 包名:com.siwuxie095.socket 类名:MyServerSocket.java 工程结构目 ...