剑指Offer面试题:8.斐波那契数列
一、题目:斐波那契数列
题目:写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项。斐波那契数列的定义如下:
二、效率很低的解法
很多C/C++/C#/Java语言教科书在讲述递归函数的时候,大多都会用Fibonacci作为例子,因此我们会对这种解法烂熟于心:
public static long FibonacciRecursively(uint n)
{
if (n <= )
{
return ;
}
if (n == )
{
return ;
} return FibonacciRecursively(n - ) + FibonacciRecursively(n - );
}
上述递归的解法有很严重的效率问题,通过求解第10项的调用过程图来分析:
从上图中不难发现:在这棵树中有很多结点是重复的,而且重复的结点数会随着n的增大而急剧增加,这意味计算量会随着n的增大而急剧增大。事实上,用递归方法计算的时间复杂度是以n的指数的方式递增的。
三、实用循环的解法
改进的方法并不复杂。上述递归代码之所以慢是因为重复的计算太多,我们只要想办法避免重复计算就行了。这里的办法是从下往上计算,首先根据f(0)和f(1)算出f(2),再根据f(1)和f(2)算出f(3)……依此类推就可以算出第n项了。很容易理解,这种思路的时间复杂度是O(n)。
public static long FibonacciIteratively(uint n)
{
int[] result = { , };
if (n < )
{
return result[n];
} long fibNMinusOne = ;
long fibNMinusTwo = ;
long fibN = ; for (uint i = ; i <= n; i++)
{
fibN = fibNMinusOne + fibNMinusTwo; fibNMinusTwo = fibNMinusOne;
fibNMinusOne = fibN;
} return fibN;
}
四、单元测试
(1)单元测试用例
[TestMethod]
public void FibonacciTest1()
{
Assert.AreEqual(FibonaaciHelper.FibonacciIteratively(),);
} [TestMethod]
public void FibonacciTest2()
{
Assert.AreEqual(FibonaaciHelper.FibonacciIteratively(), );
} [TestMethod]
public void FibonacciTest3()
{
Assert.AreEqual(FibonaaciHelper.FibonacciIteratively(), );
} [TestMethod]
public void FibonacciTest4()
{
Assert.AreEqual(FibonaaciHelper.FibonacciIteratively(), );
} [TestMethod]
public void FibonacciTest5()
{
Assert.AreEqual(FibonaaciHelper.FibonacciIteratively(), );
} [TestMethod]
public void FibonacciTest6()
{
Assert.AreEqual(FibonaaciHelper.FibonacciIteratively(), );
} [TestMethod]
public void FibonacciTest7()
{
Assert.AreEqual(FibonaaciHelper.FibonacciIteratively(), );
} [TestMethod]
public void FibonacciTest8()
{
Assert.AreEqual(FibonaaciHelper.FibonacciIteratively(), );
} [TestMethod]
public void FibonacciTest9()
{
Assert.AreEqual(FibonaaciHelper.FibonacciIteratively(), );
} [TestMethod]
public void FibonacciTest10()
{
Assert.AreEqual(FibonaaciHelper.FibonacciIteratively(), );
} [TestMethod]
public void FibonacciTest11()
{
Assert.AreEqual(FibonaaciHelper.FibonacciIteratively(), );
} [TestMethod]
public void FibonacciTest12()
{
Assert.AreEqual(FibonaaciHelper.FibonacciIteratively(), );
}
(2)单元测试结果
①测试通过结果
②代码覆盖率
剑指Offer面试题:8.斐波那契数列的更多相关文章
- 剑指Offer - 九度1387 - 斐波那契数列
剑指Offer - 九度1387 - 斐波那契数列2013-11-24 03:08 题目描述: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项.斐波那契数列的定义如下: ...
- 剑指offer第二版-10.斐波那契数列
面试题10:斐波那契数列 题目要求: 求斐波那契数列的第n项的值.f(0)=0, f(1)=1, f(n)=f(n-1)+f(n-2) n>1 思路:使用循环从下往上计算数列. 考点:考察对递归 ...
- 【剑指offer】9、斐波拉契数列
面试题9.斐波拉契数列 题目: 输入整数n,求斐波拉契数列第n个数. 思路: 一.递归式算法: 利用f(n) = f(n-1) + f(n-2)的特性来进行递归,代码如下: 代码: long long ...
- 剑指offer【07】- 斐波那契数列(java)
题目:斐波那契数列 考点:递归和循环 题目描述:大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0),n<=39. 法一:递归法,不过递归比较慢, ...
- 剑指offer(7)斐波那契数列
题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项. n<=39 题目分析 我们都知道斐波那契可以用递归,但是递归重复计算的部分太多了(虽然可以通过),但是这 ...
- 【剑指Offer】7、斐波那契数列
题目描述: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0).假设n<=39. 解题思路: 斐波那契数列:0,1,1,2,3, ...
- 【剑指offer】7:斐波那契数列
题目描述: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0,第1项是1).假设 n≤39 解题思路: 斐波拉契数列:1,1,2,3,5,8--,总结 ...
- 剑指offer——矩阵覆盖(斐波那契变形)
****感觉都可以针对斐波那契写一个变形题目的集合了****** 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? cl ...
- 【剑指offer】面试题 10. 斐波那契数列
面试题 10. 斐波那契数列 题目一:求斐波那契数列的第n项 题目描述:求斐波拉契数列的第n项 写出一个函数,输入n,求斐波拉契(Fibonacci)数列的第n项.斐波拉契数列定义如下: C++ 实现 ...
- 剑指offer编程题Java实现——面试题9斐波那契数列
题目:写一个函数,输入n,求斐波那契数列的第n项. package Solution; /** * 剑指offer面试题9:斐波那契数列 * 题目:写一个函数,输入n,求斐波那契数列的第n项. * 0 ...
随机推荐
- JavaScript异步编程的主要解决方案—对不起,我和你不在同一个频率上
众所周知(这也忒夸张了吧?),Javascript通过事件驱动机制,在单线程模型下,以异步的形式来实现非阻塞的IO操作.这种模式使得JavaScript在处理事务时非常高效,但这带来了很多问题,比如异 ...
- js 倒计时
/** * 启动,秒杀倒计时. time格式:DDHH24MISS 例如: time="11223344"; * */function timer(time) { var d = ...
- CentOS一键ftp
# Version : 1.0 # Author : 果子 # Date : -- :: # Description : 只需要三步即可完成安装 # chmod a+x install_vsftpd. ...
- 上传图片预览JS脚本 Input file图片预览的实现示例
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- IMap 对map的功能的强化
为了解决表单提交获得数据的方便性,我们将map的功能进行加强,表单提交的数据会自动将页面数据放入PageData对象中,当从页面获取数据时 new的时候要传request.request.getPar ...
- Centos7中安装Mysql及配置
CentOS 7 安装 MySQL 首先检查 MySQL 是否已安装 yum list installed | grep mysql 如果有的话 就全部卸载 yum -y remove +数据库名称 ...
- Vue - 实例
1.实例属性介绍如下图所示: 具体介绍如下: A.$parent:访问当前组件的父实例 B.$root:访问当前组件的根实例,要是没有的话,则是自己本身 C.$children:访问当前组件实例的直接 ...
- 转:Delphi的类与继承(VB与delphi比较)
既然已经做出了com程序用delphi来开发的决定,那当然就要对delphi进行一些深入的了解.有人说delphi是一个用控件堆砌起来的工具,和vb没什么两样:也有人说dephi实际上是面向过程的,他 ...
- 利用CORS实现跨域请求(转载)
跨域请求一直是网页编程中的一个难题,在过去,绝大多数人都倾向于使用JSONP来解决这一问题.不过现在,我们可以考虑一下W3C中一项新的特性--CORS(Cross-Origin Resource Sh ...
- nginx的日常应用
nginx的配置文件nginx.conf配置详解如下: user nginx nginx ; Nginx用户及组:用户 组.window下不指定 worker_processes ; 工作进程:数目. ...