一直都说学莫队,直到现在才学,训练的时候就跪了   T_T,其实挺简单的感觉。其实训练的时候也看懂了,一知半解,就想着先敲。(其实这样是不好的,应该弄懂再敲,以后要养成这个习惯)

前缀异或也很快想出来,结果没弄好边界,也是对前缀异或和莫队的不熟练。

CF 的E题,给定区间中有多少子区间个数异或等于k

容易想到的是预处理前缀异或值,求解区间[L, R]的贡献,相当于在前缀异或值[L - 1, R]中任取两个数,异或值等于k

知道区间[L, R]的贡献,可以O(1)知道[L - 1, R]和[L, R + 1]的贡献,就可以用莫队了

把询问分块,每块大小sqrtn,然后块内按右端点排序,然后two pointer维护即可。

因为块内的大小是sqrtn,然后每次移动只会移动sqrtn的大小。复杂度是nsqrtn

两题都是莫队的一个应用,离线查询区间

#include <bits/stdc++.h>
#define IOS ios::sync_with_stdio(false)
using namespace std;
#define inf (0x3f3f3f3f)
typedef long long int LL;
const int maxn = + ;
struct Query {
int L, R, id;
}node[maxn];
int a[maxn];
int n, m, k, magic;
bool cmp(struct Query a, struct Query b) {
if (a.L/magic != b.L/magic) return a.L/magic < b.L/magic;
else return a.R < b.R;
}
LL ans[maxn];
LL num[maxn];
void calc() {
LL temp = ;
int L = , R = ;
num[] = ;
for (int i = ; i <= m; ++i) {
while (R < node[i].R) {
++R;
temp += num[a[R] ^ k];
num[a[R]]++;
}
while (R > node[i].R) { // differ sqrt
num[a[R]]--;
temp -= num[a[R] ^ k];
--R;
}
while (L < node[i].L) {
num[a[L - ]]--;
temp -= num[a[L - ] ^ k];
++L;
}
while (L > node[i].L) {
--L;
temp += num[a[L - ] ^ k];
num[a[L - ]]++;
}
ans[node[i].id] = temp;
}
}
void work() {
scanf("%d%d%d", &n, &m, &k);
for (int i = ; i <= n; ++i) {
scanf("%d", a + i);
a[i] ^= a[i - ];
// printf("%d ", a[i]);
}
magic = (int)sqrt(n);
for (int i = ; i <= m; ++i) {
scanf("%d%d", &node[i].L, &node[i].R);
node[i].id = i;
}
sort(node + , node + + m, cmp);
calc();
for (int i = ; i <= m; ++i) {
cout << ans[i] << endl;
}
} int main() {
#ifdef local
freopen("data.txt", "r", stdin);
// freopen("data.txt", "w", stdout);
#endif
work();
return ;
}
#include <bits/stdc++.h>
#define IOS ios::sync_with_stdio(false)
using namespace std;
#define inf (0x3f3f3f3f)
typedef long long int LL;
const int maxn = 5e5 + ;
struct Query {
int L, R, id;
LL a, b;
void init() {
if (a != ) {
LL t = __gcd(a, b);
a /= t, b /= t;
} else b = ;
}
}node[maxn], ans[maxn];
int n, m, magic;
int a[maxn];
LL num[maxn];
bool cmp(struct Query a, struct Query b) {
if (a.L/magic != b.L/magic) return a.L/magic < b.L/magic;
else return a.R < b.R;
}
void work() {
scanf("%d%d", &n, &m);
for (int i = ; i <= n; ++i) {
scanf("%d", a + i);
}
for (int i = ; i <= m; ++i) {
scanf("%d%d", &node[i].L, &node[i].R);
node[i].id = i;
}
magic = sqrt(n);
sort(node + , node + + m, cmp);
int L = , R = ;
LL res = ;
for (int i = ; i <= m; ++i) {
while (R < node[i].R) {
++R;
res -= num[a[R]] * num[a[R]] - num[a[R]];
num[a[R]]++;
res += num[a[R]] * num[a[R]] - num[a[R]];
}
while (R > node[i].R) { //不同块之间才会出现
res -= num[a[R]] * num[a[R]] - num[a[R]];
num[a[R]]--;
res += num[a[R]] * num[a[R]] - num[a[R]];
R--;
}
while (L < node[i].L) { //每个块之间只是按照R排序的
res -= num[a[L]] * num[a[L]] - num[a[L]];
num[a[L]]--;
res += num[a[L]] * num[a[L]] - num[a[L]];
L++;
}
while (L > node[i].L) {
--L;
res -= num[a[L]] * num[a[L]] - num[a[L]];
num[a[L]]++;
res += num[a[L]] * num[a[L]] - num[a[L]];
}
ans[node[i].id].a = res, ans[node[i].id].b = 1LL * (node[i].R - node[i].L + ) * (node[i].R - node[i].L);
}
for (int i = ; i <= m; ++i) {
ans[i].init();
printf("%lld/%lld\n", ans[i].a, ans[i].b);
}
} int main() {
#ifdef local
freopen("data.txt", "r", stdin);
// freopen("data.txt", "w", stdout);
#endif
work();
return ;
}

E. XOR and Favorite Number 莫队 2038: [2009国家集训队]小Z的袜子(hose)的更多相关文章

  1. BZOJ 2038: [2009国家集训队]小Z的袜子(hose) [莫队算法]【学习笔记】

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 7687  Solved: 3516[Subm ...

  2. 莫队算法 2038: [2009国家集训队]小Z的袜子(hose)

    链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2038 2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 ...

  3. Bzoj 2038: [2009国家集训队]小Z的袜子(hose) 莫队,分块,暴力

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 5763  Solved: 2660[Subm ...

  4. BZOJ 2038: [2009国家集训队]小Z的袜子(hose) ( 莫队 )

    莫队..先按sqrt(n)分块, 然后按块的顺序对询问排序, 同块就按右端点排序. 然后就按排序后的顺序暴力求解即可. 时间复杂度O(n1.5) --------------------------- ...

  5. BZOJ 2038: [2009国家集训队]小Z的袜子(hose)【莫队算法裸题&&学习笔记】

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 9894  Solved: 4561[Subm ...

  6. 2038: [2009国家集训队]小Z的袜子(hose) (莫队算法)

    题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=2038 专题练习: http://acm.hust.edu.cn/vjudge/conte ...

  7. 莫队算法 BOJ 2038 [2009国家集训队]小Z的袜子(hose)

    题目传送门 /* 莫队算法:求出[l, r]上取出两只相同袜子的个数. 莫队算法是离线处理一类区间不修改查询类问题的算法.如果你知道了[L,R]的答案,可以在O(1)的时间下得到 [L,R-1]和[L ...

  8. BZOJ 2038: [2009国家集训队]小Z的袜子(hose)

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 7676  Solved: 3509[Subm ...

  9. BZOJ 2038: [2009国家集训队]小Z的袜子(hose) 分块

    分块大法好 2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MB Submit: 2938  Solved: 13 ...

随机推荐

  1. 洛谷 4178 Tree——点分治

    题目:https://www.luogu.org/problemnew/show/P4178 点分治.如果把每次的 dis 和 K-dis 都离散化,用树状数组找,是O(n*logn*logn),会T ...

  2. Linux 系统通过 Squid 配置实现代理上网

    本文转载自:https://help.aliyun.com/knowledge_detail/41342.html Squid 介绍 Squid 是一个缓存 Internet 数据的软件,其接收用户的 ...

  3. cocos2d-x 屏幕分辨率适配方法

    转自:http://blog.csdn.net/somestill/article/details/9950403 bool AppDelegate::applicationDidFinishLaun ...

  4. QTP连接数据库

    '注意:其中DSN=数据源名:UID=用户名:PWD=用户密码 Dim Conn Set Conn=CreateObject("ADODB.Connection") Const C ...

  5. CURL访问举例

    <?php function request($url, $params = [], $requestMethod = 'GET', $jsonDecode = true, $headers = ...

  6. 菜鸟大充电啦啦啦啦啦:eclipse SDK 是什么啊

    为什么下载是,没有单独的ecipse呢,,总是eclipse-sdk呢 而且还很大几百兆 回复1: Eclipse有好多专用名称,例如Eclipse SDK等.先说一下SDK, Eclipse Pro ...

  7. 【MySQL】MySQL悲观锁 + 事物 + for update 解决普通流量并发的问题

    使用mysql悲观锁解决并发问题   最近学习了一下数据库的悲观锁和乐观锁,根据自己的理解和网上参考资料总结如下: 悲观锁介绍(百科): 悲观锁,正如其名,它指的是对数据被外界(包括本系统当前的其他事 ...

  8. Python最小二乘法解非线性超定方程组

    求解非线性超定方程组,网上搜到的大多是线性方程组的最小二乘解法,对于非线性方程组无济于事. 这里分享一种方法:SciPy库的scipy.optimize.leastsq函数. import numpy ...

  9. C#对Execl操作类

    1.NuGet下安装 NPOI 2.实例代码:(可以根据具体情况注释和添加代码逻辑) public class ExeclHelper { /// <summary> /// 将excel ...

  10. UPCOJ9526(SG函数打表,nim游戏异或规则)

    #include<bits/stdc++.h>using namespace std;int f[1007],SG[1007],S[1007];//f为可以选取的石头个数,SG为sg函数, ...