二叉树是数据结构中的树的一种特殊情况,有关二叉树的相关概念,这里不再赘述,如果不了解二叉树相关概念,建议先学习数据结构中的二叉树的知识点。

准备数据

定义二叉树结构操作中需要用到的变量及数据等。

#define MAXLEN 20				//最大长度
typedef char DATA; //定义元素类型
struct CBTType //定义二叉树结点类型
{
DATA data; //元素数据
CBTType * left; //左子树结点指针
CBTType * right; //右子树结点指针
};

定义二叉树结构数据元素的类型DATA以及二叉树结构的数据结构CBTType。结点的具体数据保存在一个姐都DATA中,而指针left用来指向左子树结点,指针right用来指向右子树结点

初始化二叉树

初始化二叉树,将一个结点设置为二叉树的根结点。

CBTType * InitTree()
{
CBTType * node;
if(node = new CBTType) //申请内存
{
cout<<"请先输入一个根节点数据:"<<endl;
cin>>node->data;
node->left=NULL;
node->right=NULL;
if(node!=NULL) //如果二叉树结点不为空
{
return node;
} else
{
return NULL;
}
}
return NULL;
}

首先申请一个结点,然后用户输入根结点 的数据,并将左子树和右子树的指针置为空,即可完成二叉树的初始化工作。

查找结点

查找结点就是遍历二叉树中的每一个节点,逐个比较数据,当找到目标数据时将返回该数据所在结点的指针。

CBTType *TreeFindNode(CBTType *treeNode,DATA data)
{
CBTType *ptr;
if(treeNode==NULL)
{
return NULL;
}else
{
if(treeNode->data==data)
{
return treeNode;
}
else //分别向左右子树查找
{
if(ptr=TreeFindNode(treeNode->left,data)) //左子树递归查找
{
return ptr;
}
else if(ptr=TreeFindNode(treeNode->right,data)) //右子树递归查找
{
return ptr;
}
else
{
return NULL;
}
}
}
}

输入参数treeNode为待查找的二叉树的根结点,输入参数data为待查找的结点数据。程序中首先判断根结点是否为空,然后根据数据判断是否为根结点,然后分别向左右子树进行查找,采用递归的方法进行查找,查找到该结点则返回结点对应的指针;如果全都查找不到,则返回NULL。

添加结点

添加结点就是在二叉树中添加结点数据,添加结点时除了要输入结点数据外,还需要指定其父结点,以及添加的结点作为左子树还是右子树。然后将该结点置为其父结点的左子树或者右子树。

void AddTreeNode(CBTType *treeNode)
{
CBTType *pnode,*parent;
DATA data;
char menusel;
if(pnode=new CBTType) //分配内存
{
cout<<"输入二叉树结点数据:"<<endl;
cin>>pnode->data;
pnode->left=NULL; //设置左子树为空
pnode->right=NULL; //设置左子树为空
cout<<"输入该结点的父结点数据"<<endl;
cin>>data;
parent=TreeFindNode(treeNode,data);//查找父结点,获得结点指针
if(!parent)
{
cout<<"没有找到父结点"<<endl;
delete pnode;
return ;
}
cout<<"1.添加该结点到左子树;2.添加该结点到右子树。请输入操作对应的数字。"<<endl;
do
{
cin>>menusel;
if(menusel=='1'||menusel=='2')
{
switch(menusel)
{
case '1': //添加结点到左子树
if(parent->left) //左子树不为空
{
cout<<"左子树结点不为空"<<endl;
}
else
{
parent->left=pnode;
cout<<"数据添加成功!"<<endl;
}
break;
case '2': //添加结点到右子树
if(parent->right) //右子树不为空
{
cout<<"右子树结点不为空"<<endl;
}
else
{
parent->right=pnode;
cout<<"数据添加成功!"<<endl;
}
break;
default:
cout<<"子节点选择error!"<<endl;
break;
}
}
}while(menusel!='1'&&menusel!='2');
}
}

输入参数treeNode为二叉树的根结点,传入根节点是为了方便查找父结点。程序中首先申请内存,然后由用户输入二叉树结点数据,并设置左右子树为空。接着指定其父结点,将其置为左子树或者右子树。

计算二叉树的深度

计算二叉树深度就是计算二叉树中结点的最大层数,这里往往需要采用递归算法来实现。

int TreeDepth(CBTType *treeNode)
{
int depleft,depright;
if(treeNode==NULL)
{
return 0; //结点为空的时候,深度为0
}
else
{
depleft=TreeDepth(treeNode->left); //左子树深度(递归调用)
depright=TreeDepth(treeNode->right); //右子树深度(递归调用)
if(depleft)
{
return ++depleft;
}
else
{
return ++depright;
}
}
}

输入参数treeNode为待计算的二叉树的根结点。首先判断根节点是否为空,然后分别按照递归调用来计算左子树深度和右子树深度,从而完成整个二叉树深度的计算。

显示结点数据

void ShowNodeData(CBTType *treeNode)
{
cout<<treeNode->data<<"\t"; //直接输出结点数据
}

输入参数为需要显示的结点的指针。

清空二叉树

清空二叉树就是将二叉树变成一个空树,这里也需要使用递归算法来实现。

void ClearTree(CBTType *treeNode)
{
if(treeNode) //判断当前树不为空
{
ClearTree(treeNode->left); //清空左子树
ClearTree(treeNode->right); //清空右子树
delete treeNode; //释放当前结点所占用的内存
}
}

输入参数treeNode为待清空的二叉树的根节点。程序中按照递归的方法清空左子树和右子树以及根节点,释放结点占用的内存空间,从而完成清空操作。

遍历二叉树

遍历二叉树就是逐个查找二叉树中所有的结点,这里为了直观的显示查找的结果,将会按照查找的顺序,依次输出对应的结点 。

按层遍历算法

按层遍历算法是最直观的算法。即:首先输出第一层即根结点,然后输出第一个结点的左右子数,也就是第二层……这样循环处理,就可以逐层遍历,一层一层按照从上到下,从左到右的顺序输出结点。

void LevelTree(CBTType *treeNode)
{
CBTType *p;
CBTType *q[MAXLEN]; //定义一个队列
int head=0,tail=0;
if(treeNode) //如果队首指针不为空
{
tail=(tail+1)%MAXLEN; //计算循环队列队尾序号
q[tail]=treeNode; //二叉树根指针进入队列
while(head!=tail)
{
head=(head+1)%MAXLEN; //计算循环队列的队首序号
p=q[head]; //获取队首元素
ShowNodeData(p); //输出队首元素
if(p->left!=NULL) //如果存在左子树
{
tail=(tail+1)%MAXLEN; //计算队列的队尾序号
q[tail]=p->left; //左子树入队
}
if(p->right!=NULL) //如果存在右子树
{
tail=(tail+1)%MAXLEN; //计算队列的队尾序号
q[tail]=p->right; //右子树入队
}
}
}
}

输入参数treeNode为需要遍历的二叉树的根结点,程序在整个处理过程中,首先从根节点开始,将每层的结点逐步进入循环队列,并且每次循环都是输出队首的一个结点数据,然后再使它的左右子树进入队列。如此循环直到队列中的所有的数据都输出完毕。

先序遍历算法

先序遍历算法就是先访问根节点,然后访问左子树,然后访问右子树。程序中可以按照递归的思想遍历左子树和右子树。

void DLRTree(CBTType *treeNode)
{
if(treeNode)
{
ShowNodeData(treeNode); //显示结点内容
DLRTree(treeNode->left); //显示左子树内容
DLRTree(treeNode->right); //显示右子树内容
}
}

中序遍历算法

先序遍历算法就是先访问左子树,然后访问根节点,然后访问右子树。程序中可以按照递归的思想遍历左子树和右子树。

void LDRTree(CBTType *treeNode)
{
if(treeNode)
{ LDRTree(treeNode->left); //显示左子树内容
ShowNodeData(treeNode); //显示结点内容
DLRTree(treeNode->right); //显示右子树内容
}
}

后序遍历算法

先序遍历算法就是先访问左子树,然后访问右子树,然后访问根节点。程序中可以按照递归的思想遍历左子树和右子树。

void LRDTree(CBTType *treeNode)
{
if(treeNode)
{
LRDTree(treeNode->left); //显示左子树内容
DLRTree(treeNode->right); //显示右子树内容
ShowNodeData(treeNode); //显示结点内容
}
}

完整代码示例操作:

在文件中加入头文件,然后包含上述所有函数,然后再写一个main函数即可:

#include<iostream>
using namespace std;
#define MAXLEN 20 //最大长度
typedef char DATA; //定义元素类型
struct CBTType /定义二叉树结点类型
{
DATA data; //元素数据
CBTType * left; //左子树结点指针
CBTType * right; //右子树结点指针
};
/*********************初始化二叉树***********************/
CBTType * InitTree()
{
CBTType * node;
if(node = new CBTType) //申请内存
{
cout<<"请先输入一个根节点数据:"<<endl;
cin>>node->data;
node->left=NULL;
node->right=NULL;
if(node!=NULL) //如果二叉树结点不为空
{
return node;
} else
{
return NULL;
}
}
return NULL;
}
/***********************查找结点*************************/
CBTType *TreeFindNode(CBTType *treeNode,DATA data)
{
CBTType *ptr;
if(treeNode==NULL)
{
return NULL;
}else
{
if(treeNode->data==data)
{
return treeNode;
}
else //分别向左右子树查找
{
if(ptr=TreeFindNode(treeNode->left,data)) //左子树递归查找
{
return ptr;
}
else if(ptr=TreeFindNode(treeNode->right,data)) //右子树递归查找
{
return ptr;
}
else
{
return NULL;
}
}
}
}
/**********************添加结点*************************/
void AddTreeNode(CBTType *treeNode)
{
CBTType *pnode,*parent;
DATA data;
char menusel;
if(pnode=new CBTType) //分配内存
{
cout<<"输入二叉树结点数据:"<<endl;
cin>>pnode->data;
pnode->left=NULL; //设置左子树为空
pnode->right=NULL; //设置左子树为空
cout<<"输入该结点的父结点数据"<<endl;
cin>>data;
parent=TreeFindNode(treeNode,data); //查找父结点,获得结点指针
if(!parent)
{
cout<<"没有找到父结点"<<endl;
delete pnode;
return ;
}
cout<<"1.添加该结点到左子树;2.添加该结点到右子树。请输入操作对应的数字。"<<endl;
do
{
cin>>menusel;
if(menusel=='1'||menusel=='2')
{
switch(menusel)
{
case '1': //添加结点到左子树
if(parent->left) //左子树不为空
{
cout<<"左子树结点不为空"<<endl;
}
else
{
parent->left=pnode;
cout<<"数据添加成功!"<<endl;
}
break;
case '2': //添加结点到右子树
if(parent->right) //右子树不为空
{
cout<<"右子树结点不为空"<<endl;
}
else
{
parent->right=pnode;
cout<<"数据添加成功!"<<endl;
}
break;
default:
cout<<"子节点选择error!"<<endl;
break;
}
}
}while(menusel!='1'&&menusel!='2');
}
}
/***********************计算二叉树的深度********************************/
int TreeDepth(CBTType *treeNode)
{
int depleft,depright;
if(treeNode==NULL)
{
return 0; //结点为空的时候,深度为0
}
else
{
depleft=TreeDepth(treeNode->left); //左子树深度(递归调用)
depright=TreeDepth(treeNode->right); //右子树深度(递归调用)
if(depleft)
{
return ++depleft;
}
else
{
return ++depright;
}
}
}
/*************************显示结点数据*********************************/
void ShowNodeData(CBTType *treeNode)
{
cout<<treeNode->data<<"\t"; //直接输出结点数据
}
/***********************清空二叉树************************************/
void ClearTree(CBTType *treeNode)
{
if(treeNode) //判断当前树不为空
{
ClearTree(treeNode->left); //清空左子树
ClearTree(treeNode->right); //清空右子树
delete treeNode; //释放当前结点所占用的内存
}
}
/**************************按层遍历算法*********************************/
void LevelTree(CBTType *treeNode)
{
CBTType *p;
CBTType *q[MAXLEN]; //定义一个队列
int head=0,tail=0;
if(treeNode) //如果队首指针不为空
{
tail=(tail+1)%MAXLEN; //计算循环队列队尾序号
q[tail]=treeNode; //二叉树根指针进入队列
while(head!=tail)
{
head=(head+1)%MAXLEN; //计算循环队列的队首序号
p=q[head]; //获取队首元素
ShowNodeData(p); //输出队首元素
if(p->left!=NULL) //如果存在左子树
{
tail=(tail+1)%MAXLEN; //计算队列的队尾序号
q[tail]=p->left; //左子树入队
}
if(p->right!=NULL) //如果存在右子树
{
tail=(tail+1)%MAXLEN; //计算队列的队尾序号
q[tail]=p->right; //右子树入队
}
}
}
}
/*************************先序遍历算法**********************************/
void DLRTree(CBTType *treeNode)
{
if(treeNode)
{
ShowNodeData(treeNode); //显示结点内容
DLRTree(treeNode->left); //显示左子树内容
DLRTree(treeNode->right); //显示右子树内容
}
}
/***********************中序遍历算法************************************/
void LDRTree(CBTType *treeNode)
{
if(treeNode)
{ LDRTree(treeNode->left); //显示左子树内容
ShowNodeData(treeNode); //显示结点内容
DLRTree(treeNode->right); //显示右子树内容
}
}
/***********************后序遍历算法************************************/
void LRDTree(CBTType *treeNode)
{
if(treeNode)
{
LRDTree(treeNode->left); //显示左子树内容
DLRTree(treeNode->right); //显示右子树内容
ShowNodeData(treeNode); //显示结点内容
}
}
/*************************主函数部分************************************/
int main()
{
CBTType *root=NULL; //root为指向二叉树根结点的指针
char menusel;
//设置根结点
root=InitTree();
//添加结点
do
{
cout<<"请选择菜单添加二叉树的结点:"<<endl;
cout<<"0.退出;1.添加二叉树的结点。"<<endl;
cin>>menusel;
switch(menusel)
{
case '1':
AddTreeNode(root);
break;
case '0':
break;
default:
cout<<"添加结点error"<<endl;
break;
}
}while(menusel!='0');
//输出树的深度
cout<<"depth:"<<TreeDepth(root)<<endl;
//输出结点内容
do
{
cout<<"请选择菜单遍历二叉树,输入0表示退出:"<<endl;
cout<<"1.按层遍历"<<endl;
cout<<"2.先序遍历DLR"<<endl;
cout<<"3.中序遍历LDR"<<endl;
cout<<"4.后序遍历LRD"<<endl;
cin>>menusel;
switch(menusel)
{
case '0':break;
case '1':
cout<<"按层遍历的结果:"<<endl;
LevelTree(root);
cout<<endl;
break;
case '2':
cout<<"先序遍历的结果:"<<endl;
DLRTree(root);
cout<<endl;
break;
case '3':
cout<<"中序遍历的结果:"<<endl;
LDRTree(root);
cout<<endl;
break;
case '4':
cout<<"后序遍历的结果:"<<endl;
LRDTree(root);
cout<<endl;
break;
default:
cout<<"遍历方式选择出错!"<<endl;
break;
}
}while(menusel!='0');
//清空二叉树
ClearTree(root);
return 0;
}

对应的树形结构图如图:

程序运行界面:

C++二叉树结构的建立和操作的更多相关文章

  1. C++中栈结构建立和操作

    什么是栈结构 栈结构是从数据的运算来分类的,也就是说栈结构具有特殊的运算规则,即:后进先出. 我们可以把栈理解成一个大仓库,放在仓库门口(栈顶)的货物会优先被取出,然后再取出里面的货物. 而从数据的逻 ...

  2. python数据结构与算法——二叉树结构与遍历方法

    先序遍历,中序遍历,后序遍历 ,区别在于三条核心语句的位置 层序遍历  采用队列的遍历操作第一次访问根,在访问根的左孩子,接着访问根的有孩子,然后下一层 自左向右一一访问同层的结点 # 先序遍历 # ...

  3. 【二叉树->链表】二叉树结构转双向线性链表结构(先序遍历)

    二叉树存储结构属于非线性链表结构,转化成线性链表结构,能简化操作和理解.然而由非线性转线性需要对整个树遍历一次,不同的遍历方式转化结果页不一样.下面以先序为例. 方法一: 递归法.递归遍历二叉树,因为 ...

  4. C++中队列的建立和操作

    什么是队列结构 队列结构是从数据运算来分类的,也就是说队列结构具有特殊的运算规则.而从数据的逻辑结构来看,队列结构其实就是一种线性结构.如果从数据的存储结构来进一步划分,队列结构可以分成两类. 顺序队 ...

  5. 汇编语言程序入门实验二:在dos下建立子目录操作

    汇编语言程序入门实验二:在dos下建立子目录操作 1,背景 在读此文,并读懂前,建议读者先阅读这两篇博客 1,在dos环境下汇编语言程序设计入门(输出hello world)和masm32的下载.安装 ...

  6. tkinter中树状结构的建立(十四)

    树状结构的建立 import tkinter from tkinter import ttk wuya = tkinter.Tk() wuya.title("wuya") wuya ...

  7. ASP.NET Core搭建多层网站架构【1-项目结构分层建立】

    2020/01/26, ASP.NET Core 3.1, VS2019 摘要:基于ASP.NET Core 3.1 WebApi搭建后端多层网站架构[1-项目结构分层建立] 文章目录 此分支项目代码 ...

  8. shell命令分隔符 二叉树结构的命令行树

    shell命令分隔符 二叉树结构的命令行树 I  ;&

  9. cdev成员结构体file_operations文件操作结构的分析

    struct file_operations{ struct module *owner; // 指向拥有该结构的模块的指针,避免正在操作时被卸载,一般为初始化为THIS_MODULES loff_t ...

随机推荐

  1. 解决pod没有权限问题

    chmod 644 路径 echo $? 检测上一条命令的执行结果,如果是0则执行成功

  2. FOJ 2213 简单几何

    题意:给你两个圆的圆心坐标和半径,判断两个圆公切线数目. 思路:考虑两个圆间公切线的情况,两个圆的位置关系分为相离,相交,外切,内切,内含,重合,公切线数分别为4,2,3,1,0,-1. #inclu ...

  3. javascript的40个网页常用小技巧

    下面是javascript的40个网页常用小技巧,对网站开发人员相信会有帮助.1. oncontextmenu="window.event.returnValue=false" 将 ...

  4. 访问虚拟机中的架设的Web服务器

    环境: 1.虚拟机中安装了CentOS,虚拟机使用NAT的方式 2.在CentOS中安装了APACHE 并且使用 http://127.0.0.1可以正常访问,通过ifconfig查到IP地址是 19 ...

  5. MVC中使用showModalDialog

    1.mvc中使用模态对话框用于修改数据,如果第一次修改过后刷新页面,第二次修改时显示内容依然是第一次修改之前的,这里用js中的Math.Random()解决 Views: <%: Html.Ac ...

  6. 代码题(14)— 合并有序链表、数组、合并K个排序链表

    1.21. 合并两个有序链表 将两个有序链表合并为一个新的有序链表并返回.新链表是通过拼接给定的两个链表的所有节点组成的. 示例: 输入:1->2->4, 1->3->4 输出 ...

  7. Web中常用字体介绍

    1.在Web编码中,CSS默认应用的Web字体是有限的,虽然在新版本的CSS3,我们可以通过新增的@font-face属性来引入特殊的浏览器加载字体. 浏览器中展示网页文字内容时,文字字体都会按照设计 ...

  8. MySQL 当记录不存在时insert,当记录存在时update

    MySQL当记录不存在时insert,当记录存在时更新:网上基本有三种解决方法 第一种: 示例一:insert多条记录 假设有一个主键为 client_id 的 clients 表,可以使用下面的语句 ...

  9. Android简单数据存储SharedPreferences

    SharedPreferences是Android中存储简单数据的一个工具类.可以想象它是一个小小的Cookie,它通过用键值对的方式把简单数据类型(boolean.int.float.long和St ...

  10. cocos2d-x 之 CCParticleBatchNode CCParallaxNode

    //不使用 CCParticleBatchNode : 注意比较 左下角的显示信息 ; i<; ++i) { CCParticleSystem* particleSystem = CCParti ...