100 numpy exercises

A joint effort of the numpy community

The goal is both to offer a quick reference for new and old users and to provide also a set of exercices for those who teach. If you remember having asked or answered a (short) problem, you can send a pull request. The format is:

  1. #. Find indices of non-zero elements from [1,2,0,0,4,0]
  2.  
  3. .. code:: python
  4.  
  5. # Author: Somebody
  6.  
  7. print(np.nonzero([1,2,0,0,4,0]))

Here is what the page looks like so far: http://www.labri.fr/perso/nrougier/teaching/numpy.100/index.html

Repository is at: https://github.com/rougier/numpy-100

Thanks to Michiaki Ariga, there is now a Julia version.

  1. Import the numpy package under the name np (★☆☆)

    1. import numpy as np
  2. Print the numpy version and the configuration (★☆☆)

    1. print(np.__version__)
    2. np.__config__.show()
  3. Create a null vector of size 10 (★☆☆)

    1. Z = np.zeros(10)
    2. print(Z)
  4. How to get the documentation of the numpy add function from the command line ? (★☆☆)

    1. python -c "import numpy; numpy.info(numpy.add)"
  5. Create a null vector of size 10 but the fifth value which is 1 (★☆☆)

    1. Z = np.zeros(10)
    2. Z[4] = 1
    3. print(Z)
  6. Create a vector with values ranging from 10 to 49 (★☆☆)

    1. Z = np.arange(10,50)
    2. print(Z)
  7. Reverse a vector (first element becomes last) (★☆☆)

    1. Z = np.arange(50)
    2. Z = Z[::-1]
  8. Create a 3x3 matrix with values ranging from 0 to 8 (★☆☆)

    1. Z = np.arange(9).reshape(3,3)
    2. print(Z)
  9. Find indices of non-zero elements from [1,2,0,0,4,0] (★☆☆)

    1. nz = np.nonzero([1,2,0,0,4,0])
    2. print(nz)
  10. Create a 3x3 identity matrix (★☆☆)

    1. Z = np.eye(3)
    2. print(Z)
  11. Create a 3x3x3 array with random values (★☆☆)

    1. Z = np.random.random((3,3,3))
    2. print(Z)
  12. Create a 10x10 array with random values and find the minimum and maximum values (★☆☆)

    1. Z = np.random.random((10,10))
    2. Zmin, Zmax = Z.min(), Z.max()
    3. print(Zmin, Zmax)
  13. Create a random vector of size 30 and find the mean value (★☆☆)

    1. Z = np.random.random(30)
    2. m = Z.mean()
    3. print(m)
  14. Create a 2d array with 1 on the border and 0 inside (★☆☆)

    1. Z = np.ones((10,10))
    2. Z[1:-1,1:-1] = 0
  15. What is the result of the following expression ? (★☆☆)

    1. 0 * np.nan
    2. np.nan == np.nan
    3. np.inf > np.nan
    4. np.nan - np.nan
    5. 0.3 == 3 * 0.1
  16. Create a 5x5 matrix with values 1,2,3,4 just below the diagonal (★☆☆)

    1. Z = np.diag(1+np.arange(4),k=-1)
    2. print(Z)
  17. Create a 8x8 matrix and fill it with a checkerboard pattern (★☆☆)

    1. Z = np.zeros((8,8),dtype=int)
    2. Z[1::2,::2] = 1
    3. Z[::2,1::2] = 1
    4. print(Z)
  18. Consider a (6,7,8) shape array, what is the index (x,y,z) of the 100th element ?

    1. print(np.unravel_index(100,(6,7,8)))
  19. Create a checkerboard 8x8 matrix using the tile function (★☆☆)

    1. Z = np.tile( np.array([[0,1],[1,0]]), (4,4))
    2. print(Z)
  20. Normalize a 5x5 random matrix (★☆☆)

    1. Z = np.random.random((5,5))
    2. Zmax, Zmin = Z.max(), Z.min()
    3. Z = (Z - Zmin)/(Zmax - Zmin)
    4. print(Z)
  21. Multiply a 5x3 matrix by a 3x2 matrix (real matrix product) (★☆☆)

    1. Z = np.dot(np.ones((5,3)), np.ones((3,2)))
    2. print(Z)
  22. Create a 5x5 matrix with row values ranging from 0 to 4 (★★☆)

    1. Z = np.zeros((5,5))
    2. Z += np.arange(5)
    3. print(Z)
  23. Consider a generator function that generates 10 integers and use it to build an array (★☆☆)

    1. def generate():
    2. for x in xrange(10):
    3. yield x
    4. Z = np.fromiter(generate(),dtype=float,count=-1)
    5. print(Z)
  24. Create a vector of size 10 with values ranging from 0 to 1, both excluded (★★☆)

    1. Z = np.linspace(0,1,12,endpoint=True)[1:-1]
    2. print(Z)
  25. Create a random vector of size 10 and sort it (★★☆)

    1. Z = np.random.random(10)
    2. Z.sort()
    3. print(Z)
  26. Consider two random array A anb B, check if they are equal (★★☆)

    1. A = np.random.randint(0,2,5)
    2. B = np.random.randint(0,2,5)
    3. equal = np.allclose(A,B)
    4. print(equal)
  27. Make an array immutable (read-only) (★★☆)

    1. Z = np.zeros(10)
    2. Z.flags.writeable = False
    3. Z[0] = 1
  28. Consider a random 10x2 matrix representing cartesian coordinates, convert them to polar coordinates (★★☆)

    1. Z = np.random.random((10,2))
    2. X,Y = Z[:,0], Z[:,1]
    3. R = np.sqrt(X**2+Y**2)
    4. T = np.arctan2(Y,X)
    5. print(R)
    6. print(T)
  29. Create random vector of size 10 and replace the maximum value by 0 (★★☆)

    1. Z = np.random.random(10)
    2. Z[Z.argmax()] = 0
    3. print(Z)
  30. Create a structured array with x and y coordinates covering the [0,1]x[0,1] area (★★☆)

    1. Z = np.zeros((10,10), [('x',float),('y',float)])
    2. Z['x'], Z['y'] = np.meshgrid(np.linspace(0,1,10),
    3. np.linspace(0,1,10))
    4. print(Z)
  31. Print the minimum and maximum representable value for each numpy scalar type (★★☆)

    1. for dtype in [np.int8, np.int32, np.int64]:
    2. print(np.iinfo(dtype).min)
    3. print(np.iinfo(dtype).max)
    4. for dtype in [np.float32, np.float64]:
    5. print(np.finfo(dtype).min)
    6. print(np.finfo(dtype).max)
    7. print(np.finfo(dtype).eps)
  32. How to print all the values of an array ? (★★☆)

    1. np.set_printoptions(threshold=np.nan)
    2. Z = np.zeros((25,25))
    3. print(Z)
  33. How to print all the values of an array ? (★★☆)

    1. np.set_printoptions(threshold=np.nan)
    2. Z = np.zeros((25,25))
    3. print(Z)
  34. How to find the closest value (to a given scalar) in an array ? (★★☆)

    1. Z = np.arange(100)
    2. v = np.random.uniform(0,100)
    3. index = (np.abs(Z-v)).argmin()
    4. print(Z[index])
  35. Create a structured array representing a position (x,y) and a color (r,g,b) (★★☆)

    1. Z = np.zeros(10, [ ('position', [ ('x', float, 1),
    2. ('y', float, 1)]),
    3. ('color', [ ('r', float, 1),
    4. ('g', float, 1),
    5. ('b', float, 1)])])
    6. print(Z)
  36. Consider a random vector with shape (100,2) representing coordinates, find point by point distances (★★☆)

    1. Z = np.random.random((10,2))
    2. X,Y = np.atleast_2d(Z[:,0]), np.atleast_2d(Z[:,1])
    3. D = np.sqrt( (X-X.T)**2 + (Y-Y.T)**2)
    4. print(D)
    5.  
    6. # Much faster with scipy
    7. import scipy
    8. # Thanks Gavin Heverly-Coulson (#issue 1)
    9. import scipy.spatial
    10.  
    11. Z = np.random.random((10,2))
    12. D = scipy.spatial.distance.cdist(Z,Z)
    13. print(D)
  37. How to convert a float (32 bits) array into an integer (32 bits) in place ?

    1. Z = np.arange(10, dtype=np.int32)
    2. Z = Z.astype(np.float32, copy=False)
  38. Consider the following file:

    1. 1,2,3,4,5
    2. 6,,,7,8
    3. ,,9,10,11

    How to read it ? (★★☆)

    1. Z = np.genfromtxt("missing.dat", delimiter=",")
  39. What is the equivalent of enumerate for numpy arrays ? (★★☆)

    1. Z = np.arange(9).reshape(3,3)
    2. for index, value in np.ndenumerate(Z):
    3. print(index, value)
    4. for index in np.ndindex(Z.shape):
    5. print(index, Z[index])
  40. Generate a generic 2D Gaussian-like array (★★☆)

    1. X, Y = np.meshgrid(np.linspace(-1,1,10), np.linspace(-1,1,10))
    2. D = np.sqrt(X*X+Y*Y)
    3. sigma, mu = 1.0, 0.0
    4. G = np.exp(-( (D-mu)**2 / ( 2.0 * sigma**2 ) ) )
    5. print(G)
  41. How to randomly place p elements in a 2D array ? (★★☆)

    1. # Author: Divakar
    2.  
    3. n = 10
    4. p = 3
    5. Z = np.zeros((n,n))
    6. np.put(Z, np.random.choice(range(n*n), p, replace=False),1)
  42. Subtract the mean of each row of a matrix (★★☆)

    1. # Author: Warren Weckesser
    2.  
    3. X = np.random.rand(5, 10)
    4.  
    5. # Recent versions of numpy
    6. Y = X - X.mean(axis=1, keepdims=True)
    7.  
    8. # Older versions of numpy
    9. Y = X - X.mean(axis=1).reshape(-1, 1)
  43. How to I sort an array by the nth column ? (★★☆)

    1. # Author: Steve Tjoa
    2.  
    3. Z = np.random.randint(0,10,(3,3))
    4. print(Z)
    5. print(Z[Z[:,1].argsort()])
  44. How to tell if a given 2D array has null columns ? (★★☆)

    1. # Author: Warren Weckesser
    2.  
    3. Z = np.random.randint(0,3,(3,10))
    4. print((~Z.any(axis=0)).any())
  45. Find the nearest value from a given value in an array (★★☆)

    1. Z = np.random.uniform(0,1,10)
    2. z = 0.5
    3. m = Z.flat[np.abs(Z - z).argmin()]
    4. print(m)
  46. Consider a given vector, how to add 1 to each element indexed by a second vector (be careful with repeated indices) ? (★★★)

    1. # Author: Brett Olsen
    2.  
    3. Z = np.ones(10)
    4. I = np.random.randint(0,len(Z),20)
    5. Z += np.bincount(I, minlength=len(Z))
    6. print(Z)
  47. How to accumulate elements of a vector (X) to an array (F) based on an index list (I) ? (★★★)

    1. # Author: Alan G Isaac
    2.  
    3. X = [1,2,3,4,5,6]
    4. I = [1,3,9,3,4,1]
    5. F = np.bincount(I,X)
    6. print(F)
  48. Considering a (w,h,3) image of (dtype=ubyte), compute the number of unique colors (★★★)

    1. # Author: Nadav Horesh
    2.  
    3. w,h = 16,16
    4. I = np.random.randint(0,2,(h,w,3)).astype(np.ubyte)
    5. F = I[...,0]*256*256 + I[...,1]*256 +I[...,2]
    6. n = len(np.unique(F))
    7. print(np.unique(I))
  49. Considering a four dimensions array, how to get sum over the last two axis at once ? (★★★)

    1. A = np.random.randint(0,10,(3,4,3,4))
    2. sum = A.reshape(A.shape[:-2] + (-1,)).sum(axis=-1)
    3. print(sum)
  50. Considering a one-dimensional vector D, how to compute means of subsets of D using a vector S of same size describing subset indices ? (★★★)

    1. # Author: Jaime Fernández del Río
    2.  
    3. D = np.random.uniform(0,1,100)
    4. S = np.random.randint(0,10,100)
    5. D_sums = np.bincount(S, weights=D)
    6. D_counts = np.bincount(S)
    7. D_means = D_sums / D_counts
    8. print(D_means)
  51. How to get the diagonal of a dot product ? (★★★)

    1. # Author: Mathieu Blondel
    2.  
    3. # Slow version
    4. np.diag(np.dot(A, B))
    5.  
    6. # Fast version
    7. np.sum(A * B.T, axis=1)
    8.  
    9. # Faster version
    10. np.einsum("ij,ji->i", A, B).
  52. Consider the vector [1, 2, 3, 4, 5], how to build a new vector with 3 consecutive zeros interleaved between each value ? (★★★)

    1. # Author: Warren Weckesser
    2.  
    3. Z = np.array([1,2,3,4,5])
    4. nz = 3
    5. Z0 = np.zeros(len(Z) + (len(Z)-1)*(nz))
    6. Z0[::nz+1] = Z
    7. print(Z0)
  53. Consider an array of dimension (5,5,3), how to mulitply it by an array with dimensions (5,5) ? (★★★)

    1. A = np.ones((5,5,3))
    2. B = 2*np.ones((5,5))
    3. print(A * B[:,:,None])
  54. How to swap two rows of an array ? (★★★)

    1. # Author: Eelco Hoogendoorn
    2.  
    3. A = np.arange(25).reshape(5,5)
    4. A[[0,1]] = A[[1,0]]
    5. print(A)
  55. Consider a set of 10 triplets describing 10 triangles (with shared vertices), find the set of unique line segments composing all the triangles (★★★)

    1. # Author: Nicolas P. Rougier
    2.  
    3. faces = np.random.randint(0,100,(10,3))
    4. F = np.roll(faces.repeat(2,axis=1),-1,axis=1)
    5. F = F.reshape(len(F)*3,2)
    6. F = np.sort(F,axis=1)
    7. G = F.view( dtype=[('p0',F.dtype),('p1',F.dtype)] )
    8. G = np.unique(G)
    9. print(G)
  56. Given an array C that is a bincount, how to produce an array A such that np.bincount(A) == C ? (★★★)

    1. # Author: Jaime Fernández del Río
    2.  
    3. C = np.bincount([1,1,2,3,4,4,6])
    4. A = np.repeat(np.arange(len(C)), C)
    5. print(A)
  57. How to compute averages using a sliding window over an array ? (★★★)

    1. # Author: Jaime Fernández del Río
    2.  
    3. def moving_average(a, n=3) :
    4. ret = np.cumsum(a, dtype=float)
    5. ret[n:] = ret[n:] - ret[:-n]
    6. return ret[n - 1:] / n
    7. Z = np.arange(20)
    8. print(moving_average(Z, n=3))
  58. Consider a one-dimensional array Z, build a two-dimensional array whose first row is (Z[0],Z[1],Z[2]) and each subsequent row is shifted by 1 (last row should be (Z[-3],Z[-2],Z[-1]) (★★★)

    1. # Author: Joe Kington / Erik Rigtorp
    2. from numpy.lib import stride_tricks
    3.  
    4. def rolling(a, window):
    5. shape = (a.size - window + 1, window)
    6. strides = (a.itemsize, a.itemsize)
    7. return stride_tricks.as_strided(a, shape=shape, strides=strides)
    8. Z = rolling(np.arange(10), 3)
    9. print(Z)
  59. How to negate a boolean, or to change the sign of a float inplace ? (★★★)

    1. # Author: Nathaniel J. Smith
    2.  
    3. Z = np.random.randint(0,2,100)
    4. np.logical_not(arr, out=arr)
    5.  
    6. Z = np.random.uniform(-1.0,1.0,100)
    7. np.negative(arr, out=arr)
  60. Consider 2 sets of points P0,P1 describing lines (2d) and a point p, how to compute distance from p to each line i (P0[i],P1[i]) ? (★★★)

    1. def distance(P0, P1, p):
    2. T = P1 - P0
    3. L = (T**2).sum(axis=1)
    4. U = -((P0[:,0]-p[...,0])*T[:,0] + (P0[:,1]-p[...,1])*T[:,1]) / L
    5. U = U.reshape(len(U),1)
    6. D = P0 + U*T - p
    7. return np.sqrt((D**2).sum(axis=1))
    8.  
    9. P0 = np.random.uniform(-10,10,(10,2))
    10. P1 = np.random.uniform(-10,10,(10,2))
    11. p = np.random.uniform(-10,10,( 1,2))
    12. print(distance(P0, P1, p))
  61. Consider 2 sets of points P0,P1 describing lines (2d) and a set of points P, how to compute distance from each point j (P[j]) to each line i (P0[i],P1[i]) ? (★★★)

    1. # Author: Italmassov Kuanysh
    2. # based on distance function from previous question
    3. P0 = np.random.uniform(-10, 10, (10,2))
    4. P1 = np.random.uniform(-10,10,(10,2))
    5. p = np.random.uniform(-10, 10, (10,2))
    6. print np.array([distance(P0,P1,p_i) for p_i in p])
  62. Consider an arbitrary array, write a function that extract a subpart with a fixed shape and centered on a given element (pad with a fill value when necessary) (★★★)

    1. # Author: Nicolas Rougier
    2.  
    3. Z = np.random.randint(0,10,(10,10))
    4. shape = (5,5)
    5. fill = 0
    6. position = (1,1)
    7.  
    8. R = np.ones(shape, dtype=Z.dtype)*fill
    9. P = np.array(list(position)).astype(int)
    10. Rs = np.array(list(R.shape)).astype(int)
    11. Zs = np.array(list(Z.shape)).astype(int)
    12.  
    13. R_start = np.zeros((len(shape),)).astype(int)
    14. R_stop = np.array(list(shape)).astype(int)
    15. Z_start = (P-Rs//2)
    16. Z_stop = (P+Rs//2)+Rs%2
    17.  
    18. R_start = (R_start - np.minimum(Z_start,0)).tolist()
    19. Z_start = (np.maximum(Z_start,0)).tolist()
    20. R_stop = np.maximum(R_start, (R_stop - np.maximum(Z_stop-Zs,0))).tolist()
    21. Z_stop = (np.minimum(Z_stop,Zs)).tolist()
    22.  
    23. r = [slice(start,stop) for start,stop in zip(R_start,R_stop)]
    24. z = [slice(start,stop) for start,stop in zip(Z_start,Z_stop)]
    25. R[r] = Z[z]
    26. print(Z)
    27. print(R)
  63. Consider an array Z = [1,2,3,4,5,6,7,8,9,10,11,12,13,14], how to generate an array R = [[1,2,3,4], [2,3,4,5], [3,4,5,6], ..., [11,12,13,14]] ? (★★★)

    1. # Author: Stefan van der Walt
    2.  
    3. Z = np.arange(1,15,dtype=uint32)
    4. R = stride_tricks.as_strided(Z,(11,4),(4,4))
    5. print(R)
  64. Compute a matrix rank (★★★)

    1. # Author: Stefan van der Walt
    2.  
    3. Z = np.random.uniform(0,1,(10,10))
    4. U, S, V = np.linalg.svd(Z) # Singular Value Decomposition
    5. rank = np.sum(S > 1e-10)
  65. How to find the most frequent value in an array ?

    1. Z = np.random.randint(0,10,50)
    2. print(np.bincount(Z).argmax())
  66. Extract all the contiguous 3x3 blocks from a random 10x10 matrix (★★★)

    1. # Author: Chris Barker
    2.  
    3. Z = np.random.randint(0,5,(10,10))
    4. n = 3
    5. i = 1 + (Z.shape[0]-3)
    6. j = 1 + (Z.shape[1]-3)
    7. C = stride_tricks.as_strided(Z, shape=(i, j, n, n), strides=Z.strides + Z.strides)
    8. print(C)
  67. Create a 2D array subclass such that Z[i,j] == Z[j,i] (★★★)

    1. # Author: Eric O. Lebigot
    2. # Note: only works for 2d array and value setting using indices
    3.  
    4. class Symetric(np.ndarray):
    5. def __setitem__(self, (i,j), value):
    6. super(Symetric, self).__setitem__((i,j), value)
    7. super(Symetric, self).__setitem__((j,i), value)
    8.  
    9. def symetric(Z):
    10. return np.asarray(Z + Z.T - np.diag(Z.diagonal())).view(Symetric)
    11.  
    12. S = symetric(np.random.randint(0,10,(5,5)))
    13. S[2,3] = 42
    14. print(S)
  68. Consider a set of p matrices wich shape (n,n) and a set of p vectors with shape (n,1). How to compute the sum of of the p matrix products at once ? (result has shape (n,1)) (★★★)

    1. # Author: Stefan van der Walt
    2.  
    3. p, n = 10, 20
    4. M = np.ones((p,n,n))
    5. V = np.ones((p,n,1))
    6. S = np.tensordot(M, V, axes=[[0, 2], [0, 1]])
    7. print(S)
    8.  
    9. # It works, because:
    10. # M is (p,n,n)
    11. # V is (p,n,1)
    12. # Thus, summing over the paired axes 0 and 0 (of M and V independently),
    13. # and 2 and 1, to remain with a (n,1) vector.
  69. Consider a 16x16 array, how to get the block-sum (block size is 4x4) ? (★★★)

    1. # Author: Robert Kern
    2.  
    3. Z = np.ones(16,16)
    4. k = 4
    5. S = np.add.reduceat(np.add.reduceat(Z, np.arange(0, Z.shape[0], k), axis=0),
    6. np.arange(0, Z.shape[1], k), axis=1)
  70. How to implement the Game of Life using numpy arrays ? (★★★)

    1. # Author: Nicolas Rougier
    2.  
    3. def iterate(Z):
    4. # Count neighbours
    5. N = (Z[0:-2,0:-2] + Z[0:-2,1:-1] + Z[0:-2,2:] +
    6. Z[1:-1,0:-2] + Z[1:-1,2:] +
    7. Z[2: ,0:-2] + Z[2: ,1:-1] + Z[2: ,2:])
    8.  
    9. # Apply rules
    10. birth = (N==3) & (Z[1:-1,1:-1]==0)
    11. survive = ((N==2) | (N==3)) & (Z[1:-1,1:-1]==1)
    12. Z[...] = 0
    13. Z[1:-1,1:-1][birth | survive] = 1
    14. return Z
    15.  
    16. Z = np.random.randint(0,2,(50,50))
    17. for i in range(100): Z = iterate(Z)
  71. How to get the n largest values of an array (★★★)

    1. Z = np.arange(10000)
    2. np.random.shuffle(Z)
    3. n = 5
    4.  
    5. # Slow
    6. print (Z[np.argsort(Z)[-n:]])
    7.  
    8. # Fast
    9. print (Z[np.argpartition(-Z,n)[:n]])
  72. Given an arbitrary number of vectors, build the cartesian product (every combinations of every item) (★★★)

    1. # Author: Stefan Van der Walt
    2.  
    3. def cartesian(arrays):
    4. arrays = [np.asarray(a) for a in arrays]
    5. shape = (len(x) for x in arrays)
    6.  
    7. ix = np.indices(shape, dtype=int)
    8. ix = ix.reshape(len(arrays), -1).T
    9.  
    10. for n, arr in enumerate(arrays):
    11. ix[:, n] = arrays[n][ix[:, n]]
    12.  
    13. return ix
    14.  
    15. print (cartesian(([1, 2, 3], [4, 5], [6, 7])))
  73. How to create a record array from a regular array ? (★★★)

    1. Z = np.array([("Hello", 2.5, 3),
    2. ("World", 3.6, 2)])
    3. R = np.core.records.fromarrays(Z.T,
    4. names='col1, col2, col3',
    5. formats = 'S8, f8, i8')
  74. Comsider a large vector Z, compute Z to the power of 3 using 3 different methods (★★★)

    1. Author: Ryan G.
    2.  
    3. x = np.random.rand(5e7)
    4.  
    5. %timeit np.power(x,3)
    6. 1 loops, best of 3: 574 ms per loop
    7.  
    8. %timeit x*x*x
    9. 1 loops, best of 3: 429 ms per loop
    10.  
    11. %timeit np.einsum('i,i,i->i',x,x,x)
    12. 1 loops, best of 3: 244 ms per loop
  75. Consider two arrays A and B of shape (8,3) and (2,2). How to find rows of A that contain elements of each row of B regardless of the order of the elements in B ? (★★★)

    1. # Author: Gabe Schwartz
    2.  
    3. A = np.random.randint(0,5,(8,3))
    4. B = np.random.randint(0,5,(2,2))
    5.  
    6. C = (A[..., np.newaxis, np.newaxis] == B)
    7. rows = (C.sum(axis=(1,2,3)) >= B.shape[1]).nonzero()[0]
    8. print(rows)
  76. Considering a 10x3 matrix, extract rows with unequal values (e.g. [2,2,3]) (★★★)

    1. # Author: Robert Kern
    2.  
    3. Z = np.random.randint(0,5,(10,3))
    4. E = np.logical_and.reduce(Z[:,1:] == Z[:,:-1], axis=1)
    5. U = Z[~E]
    6. print(Z)
    7. print(U)
  77. Convert a vector of ints into a matrix binary representation (★★★)

    1. # Author: Warren Weckesser
    2.  
    3. I = np.array([0, 1, 2, 3, 15, 16, 32, 64, 128])
    4. B = ((I.reshape(-1,1) & (2**np.arange(8))) != 0).astype(int)
    5. print(B[:,::-1])
    6.  
    7. # Author: Daniel T. McDonald
    8.  
    9. I = np.array([0, 1, 2, 3, 15, 16, 32, 64, 128], dtype=np.uint8)
    10. print(np.unpackbits(I[:, np.newaxis], axis=1))
  78. Given a two dimensional array, how to extract unique rows ? (★★★)

    1. # Author: Jaime Fernández del Río
    2.  
    3. Z = np.random.randint(0,2,(6,3))
    4. T = np.ascontiguousarray(Z).view(np.dtype((np.void, Z.dtype.itemsize * Z.shape[1])))
    5. _, idx = np.unique(T, return_index=True)
    6. uZ = Z[idx]
    7. print(uZ)
  79. Considering 2 vectors A & B, write the einsum equivalent of inner, outer, sum, and mul function (★★★)

    1. # Author: Alex Riley
    2. # Make sure to read: http://ajcr.net/Basic-guide-to-einsum/
    3.  
    4. np.einsum('i->', A) # np.sum(A)
    5. np.einsum('i,i->i', A, B) # A * B
    6. np.einsum('i,i', A, B) # np.inner(A, B)
    7. np.einsum('i,j', A, B) # np.outer(A, B)
  80. Considering a path described by two vectors (X,Y), how to sample it using equidistant samples (★★★) ?

    1. # Author: Bas Swinckels
    2.  
    3. phi = np.arange(0, 10*np.pi, 0.1)
    4. a = 1
    5. x = a*phi*np.cos(phi)
    6. y = a*phi*np.sin(phi)
    7.  
    8. dr = (np.diff(x)**2 + np.diff(y)**2)**.5 # segment lengths
    9. r = np.zeros_like(x)
    10. r[1:] = np.cumsum(dr) # integrate path
    11. r_int = np.linspace(0, r.max(), 200) # regular spaced path
    12. x_int = np.interp(r_int, r, x) # integrate path
    13. y_int = np.interp(r_int, r, y)

100 numpy exercises的更多相关文章

  1. Python之Numpy详细教程

    NumPy - 简介 NumPy 是一个 Python 包. 它代表 “Numeric Python”. 它是一个由多维数组对象和用于处理数组的例程集合组成的库. Numeric,即 NumPy 的前 ...

  2. Python: NumPy, Pandas学习资料

    NumPy 学习资料 书籍 NumPy Cookbook_[Idris2012] NumPy Beginner's Guide,3rd_[Idris2015] Python数据分析基础教程:NumPy ...

  3. 利用Python,四步掌握机器学习

    为了理解和应用机器学习技术,你需要学习 Python 或者 R.这两者都是与 C.Java.PHP 相类似的编程语言.但是,因为 Python 与 R 都比较年轻,而且更加“远离”CPU,所以它们显得 ...

  4. 利用python 掌握机器学习的过程

    转载:http://python.jobbole.com/84326/ 偶然看到的这篇文章,觉得对我挺有引导作用的.特此跟大家分享一下. 为了理解和应用机器学习技术,你需要学习 Python 或者 R ...

  5. [转]numpy 100道练习题

    100 numpy exercise 翻译:YingJoy 网址: https://www.yingjoy.cn/ 来源:https://github.com/rougier/numpy-100 Nu ...

  6. Python 数据科学系列 の Numpy、Series 和 DataFrame介绍

    本課主題 Numpy 的介绍和操作实战 Series 的介绍和操作实战 DataFrame 的介绍和操作实战 Numpy 的介绍和操作实战 numpy 是 Python 在数据计算领域里很常用的模块 ...

  7. array numpy 模块

    高级用法:http://www.jb51.net/article/87987.htm from array import * 调用 array 与 import numpy as np  调用 np. ...

  8. ubuntu16.04 安装opencv3

    (opencvC++) luo@luo-ThinkPad-W540:20181205$ conda install --channel https://conda.anaconda.org/menpo ...

  9. 1000个经常使用的Python库和演示样例代码

    以下是programcreek.com通过分析大量开源码,提取出的最经常使用的python库. 1. sys    (4627) 2. os    (4088)  3. re    (3563)  4 ...

随机推荐

  1. SpringMVC中的视图和视图解析器

    对于控制器的目标方法,无论其返回值是String.View.ModelMap或是ModelAndView,SpringMVC都会在内部将它们封装为一个ModelAndView对象进行返回.  Spri ...

  2. C# 控制反转(IOC: Inverse Of Control) & 依赖注入(DI: Independence Inject)

    举例:在每天的日常生活中,我们离不开水,电,气.在城市化之前,我们每家每户需要自己去搞定这些东西:自己挖水井取水,自己点煤油灯照明,自己上山砍柴做饭.而城市化之后,人们从这些琐事中解放了出来,城市中出 ...

  3. toTop插件(三)

    前言 当窗体内容过多会出现滚动, 点击回到顶部滚动条在在上边(大家都懂得,我语文学的不好,表达不清^_^) 看代码 CSS : .toTop{ position: fixed; width: 50px ...

  4. python 基础内置函数表及简单介绍

    内建函数名 (表达形式) 主要作用 备注 abs(x) 返回一个X值得绝对值(x=int/float/复数) all(iterable) 如果 iterable 的所有元素均为 True(或 iter ...

  5. Dropping Balls UVA - 679(二叉树的遍历)

    题目链接:https://vjudge.net/problem/UVA-679 题目大意:t组样例,每组包括D M   层数是D   问第M个小球落在哪个叶子节点?    每个节点有开关  刚开始全都 ...

  6. Matrix Chain Multiplication (堆栈)

    题目链接:https://vjudge.net/problem/UVA-442 题目大意:输入n个矩阵的维度和一些矩阵链乘表达式,输出乘法的次数.如果乘法无法进行,输出error. 假定A是m*n的矩 ...

  7. Nginx + Keepalived 实例(测试可行)

    Nginx_Master: 192.168.1.103 提供负载均衡 Nginx_BackUp: 192.168.1.104 负载均衡备机 Nginx_VIP_TP: 192.168.1.108 网站 ...

  8. POJ 1182——食物链——————【种类并查集】

    食物链 Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u Submit Status P ...

  9. 详细记录vue项目实战步骤(含vue-cli脚手架)

    一.通过vue-cli创建了一个demo. (vue-cli是快速构建这个单页应用的脚手架,本身继承了多种项目模板:webpack(含eslit,unit)和webpack-simple(无eslin ...

  10. 微信小程序可用的第三方库

    1.wxDraw 轻量的小程序canvas动画库,专门用于处理小程序上canvas 的图形创建.图形动画,以及交互问题. 链接:http://project.ueflat.xyz/#/ 2.ZanUi ...