100 numpy exercises
100 numpy exercises
A joint effort of the numpy community
The goal is both to offer a quick reference for new and old users and to provide also a set of exercices for those who teach. If you remember having asked or answered a (short) problem, you can send a pull request. The format is:
- #. Find indices of non-zero elements from [1,2,0,0,4,0]
- .. code:: python
- # Author: Somebody
- print(np.nonzero([1,2,0,0,4,0]))
Here is what the page looks like so far: http://www.labri.fr/perso/nrougier/teaching/numpy.100/index.html
Repository is at: https://github.com/rougier/numpy-100
Thanks to Michiaki Ariga, there is now a Julia version.
Import the numpy package under the name np (★☆☆)
- import numpy as np
Print the numpy version and the configuration (★☆☆)
- print(np.__version__)
- np.__config__.show()
- print(np.__version__)
Create a null vector of size 10 (★☆☆)
- Z = np.zeros(10)
- print(Z)
- Z = np.zeros(10)
How to get the documentation of the numpy add function from the command line ? (★☆☆)
- python -c "import numpy; numpy.info(numpy.add)"
Create a null vector of size 10 but the fifth value which is 1 (★☆☆)
- Z = np.zeros(10)
- Z[4] = 1
- print(Z)
- Z = np.zeros(10)
Create a vector with values ranging from 10 to 49 (★☆☆)
- Z = np.arange(10,50)
- print(Z)
- Z = np.arange(10,50)
Reverse a vector (first element becomes last) (★☆☆)
- Z = np.arange(50)
- Z = Z[::-1]
- Z = np.arange(50)
Create a 3x3 matrix with values ranging from 0 to 8 (★☆☆)
- Z = np.arange(9).reshape(3,3)
- print(Z)
- Z = np.arange(9).reshape(3,3)
Find indices of non-zero elements from [1,2,0,0,4,0] (★☆☆)
- nz = np.nonzero([1,2,0,0,4,0])
- print(nz)
- nz = np.nonzero([1,2,0,0,4,0])
Create a 3x3 identity matrix (★☆☆)
- Z = np.eye(3)
- print(Z)
- Z = np.eye(3)
Create a 3x3x3 array with random values (★☆☆)
- Z = np.random.random((3,3,3))
- print(Z)
- Z = np.random.random((3,3,3))
Create a 10x10 array with random values and find the minimum and maximum values (★☆☆)
- Z = np.random.random((10,10))
- Zmin, Zmax = Z.min(), Z.max()
- print(Zmin, Zmax)
- Z = np.random.random((10,10))
Create a random vector of size 30 and find the mean value (★☆☆)
- Z = np.random.random(30)
- m = Z.mean()
- print(m)
- Z = np.random.random(30)
Create a 2d array with 1 on the border and 0 inside (★☆☆)
- Z = np.ones((10,10))
- Z[1:-1,1:-1] = 0
- Z = np.ones((10,10))
What is the result of the following expression ? (★☆☆)
- 0 * np.nan
- np.nan == np.nan
- np.inf > np.nan
- np.nan - np.nan
- 0.3 == 3 * 0.1
- 0 * np.nan
Create a 5x5 matrix with values 1,2,3,4 just below the diagonal (★☆☆)
- Z = np.diag(1+np.arange(4),k=-1)
- print(Z)
- Z = np.diag(1+np.arange(4),k=-1)
Create a 8x8 matrix and fill it with a checkerboard pattern (★☆☆)
- Z = np.zeros((8,8),dtype=int)
- Z[1::2,::2] = 1
- Z[::2,1::2] = 1
- print(Z)
- Z = np.zeros((8,8),dtype=int)
Consider a (6,7,8) shape array, what is the index (x,y,z) of the 100th element ?
- print(np.unravel_index(100,(6,7,8)))
Create a checkerboard 8x8 matrix using the tile function (★☆☆)
- Z = np.tile( np.array([[0,1],[1,0]]), (4,4))
- print(Z)
- Z = np.tile( np.array([[0,1],[1,0]]), (4,4))
Normalize a 5x5 random matrix (★☆☆)
- Z = np.random.random((5,5))
- Zmax, Zmin = Z.max(), Z.min()
- Z = (Z - Zmin)/(Zmax - Zmin)
- print(Z)
- Z = np.random.random((5,5))
Multiply a 5x3 matrix by a 3x2 matrix (real matrix product) (★☆☆)
- Z = np.dot(np.ones((5,3)), np.ones((3,2)))
- print(Z)
- Z = np.dot(np.ones((5,3)), np.ones((3,2)))
Create a 5x5 matrix with row values ranging from 0 to 4 (★★☆)
- Z = np.zeros((5,5))
- Z += np.arange(5)
- print(Z)
- Z = np.zeros((5,5))
Consider a generator function that generates 10 integers and use it to build an array (★☆☆)
- def generate():
- for x in xrange(10):
- yield x
- Z = np.fromiter(generate(),dtype=float,count=-1)
- print(Z)
- def generate():
Create a vector of size 10 with values ranging from 0 to 1, both excluded (★★☆)
- Z = np.linspace(0,1,12,endpoint=True)[1:-1]
- print(Z)
- Z = np.linspace(0,1,12,endpoint=True)[1:-1]
Create a random vector of size 10 and sort it (★★☆)
- Z = np.random.random(10)
- Z.sort()
- print(Z)
- Z = np.random.random(10)
Consider two random array A anb B, check if they are equal (★★☆)
- A = np.random.randint(0,2,5)
- B = np.random.randint(0,2,5)
- equal = np.allclose(A,B)
- print(equal)
- A = np.random.randint(0,2,5)
Make an array immutable (read-only) (★★☆)
- Z = np.zeros(10)
- Z.flags.writeable = False
- Z[0] = 1
- Z = np.zeros(10)
Consider a random 10x2 matrix representing cartesian coordinates, convert them to polar coordinates (★★☆)
- Z = np.random.random((10,2))
- X,Y = Z[:,0], Z[:,1]
- R = np.sqrt(X**2+Y**2)
- T = np.arctan2(Y,X)
- print(R)
- print(T)
- Z = np.random.random((10,2))
Create random vector of size 10 and replace the maximum value by 0 (★★☆)
- Z = np.random.random(10)
- Z[Z.argmax()] = 0
- print(Z)
- Z = np.random.random(10)
Create a structured array with x and y coordinates covering the [0,1]x[0,1] area (★★☆)
- Z = np.zeros((10,10), [('x',float),('y',float)])
- Z['x'], Z['y'] = np.meshgrid(np.linspace(0,1,10),
- np.linspace(0,1,10))
- print(Z)
- Z = np.zeros((10,10), [('x',float),('y',float)])
Print the minimum and maximum representable value for each numpy scalar type (★★☆)
- for dtype in [np.int8, np.int32, np.int64]:
- print(np.iinfo(dtype).min)
- print(np.iinfo(dtype).max)
- for dtype in [np.float32, np.float64]:
- print(np.finfo(dtype).min)
- print(np.finfo(dtype).max)
- print(np.finfo(dtype).eps)
- for dtype in [np.int8, np.int32, np.int64]:
How to print all the values of an array ? (★★☆)
- np.set_printoptions(threshold=np.nan)
- Z = np.zeros((25,25))
- print(Z)
- np.set_printoptions(threshold=np.nan)
How to print all the values of an array ? (★★☆)
- np.set_printoptions(threshold=np.nan)
- Z = np.zeros((25,25))
- print(Z)
- np.set_printoptions(threshold=np.nan)
How to find the closest value (to a given scalar) in an array ? (★★☆)
- Z = np.arange(100)
- v = np.random.uniform(0,100)
- index = (np.abs(Z-v)).argmin()
- print(Z[index])
- Z = np.arange(100)
Create a structured array representing a position (x,y) and a color (r,g,b) (★★☆)
- Z = np.zeros(10, [ ('position', [ ('x', float, 1),
- ('y', float, 1)]),
- ('color', [ ('r', float, 1),
- ('g', float, 1),
- ('b', float, 1)])])
- print(Z)
- Z = np.zeros(10, [ ('position', [ ('x', float, 1),
Consider a random vector with shape (100,2) representing coordinates, find point by point distances (★★☆)
- Z = np.random.random((10,2))
- X,Y = np.atleast_2d(Z[:,0]), np.atleast_2d(Z[:,1])
- D = np.sqrt( (X-X.T)**2 + (Y-Y.T)**2)
- print(D)
- # Much faster with scipy
- import scipy
- # Thanks Gavin Heverly-Coulson (#issue 1)
- import scipy.spatial
- Z = np.random.random((10,2))
- D = scipy.spatial.distance.cdist(Z,Z)
- print(D)
- Z = np.random.random((10,2))
How to convert a float (32 bits) array into an integer (32 bits) in place ?
- Z = np.arange(10, dtype=np.int32)
- Z = Z.astype(np.float32, copy=False)
- Z = np.arange(10, dtype=np.int32)
Consider the following file:
- 1,2,3,4,5
- 6,,,7,8
- ,,9,10,11
How to read it ? (★★☆)
- Z = np.genfromtxt("missing.dat", delimiter=",")
- 1,2,3,4,5
What is the equivalent of enumerate for numpy arrays ? (★★☆)
- Z = np.arange(9).reshape(3,3)
- for index, value in np.ndenumerate(Z):
- print(index, value)
- for index in np.ndindex(Z.shape):
- print(index, Z[index])
- Z = np.arange(9).reshape(3,3)
Generate a generic 2D Gaussian-like array (★★☆)
- X, Y = np.meshgrid(np.linspace(-1,1,10), np.linspace(-1,1,10))
- D = np.sqrt(X*X+Y*Y)
- sigma, mu = 1.0, 0.0
- G = np.exp(-( (D-mu)**2 / ( 2.0 * sigma**2 ) ) )
- print(G)
- X, Y = np.meshgrid(np.linspace(-1,1,10), np.linspace(-1,1,10))
How to randomly place p elements in a 2D array ? (★★☆)
- # Author: Divakar
- n = 10
- p = 3
- Z = np.zeros((n,n))
- np.put(Z, np.random.choice(range(n*n), p, replace=False),1)
Subtract the mean of each row of a matrix (★★☆)
- # Author: Warren Weckesser
- X = np.random.rand(5, 10)
- # Recent versions of numpy
- Y = X - X.mean(axis=1, keepdims=True)
- # Older versions of numpy
- Y = X - X.mean(axis=1).reshape(-1, 1)
How to I sort an array by the nth column ? (★★☆)
- # Author: Steve Tjoa
- Z = np.random.randint(0,10,(3,3))
- print(Z)
- print(Z[Z[:,1].argsort()])
How to tell if a given 2D array has null columns ? (★★☆)
- # Author: Warren Weckesser
- Z = np.random.randint(0,3,(3,10))
- print((~Z.any(axis=0)).any())
Find the nearest value from a given value in an array (★★☆)
- Z = np.random.uniform(0,1,10)
- z = 0.5
- m = Z.flat[np.abs(Z - z).argmin()]
- print(m)
- Z = np.random.uniform(0,1,10)
Consider a given vector, how to add 1 to each element indexed by a second vector (be careful with repeated indices) ? (★★★)
- # Author: Brett Olsen
- Z = np.ones(10)
- I = np.random.randint(0,len(Z),20)
- Z += np.bincount(I, minlength=len(Z))
- print(Z)
How to accumulate elements of a vector (X) to an array (F) based on an index list (I) ? (★★★)
- # Author: Alan G Isaac
- X = [1,2,3,4,5,6]
- I = [1,3,9,3,4,1]
- F = np.bincount(I,X)
- print(F)
Considering a (w,h,3) image of (dtype=ubyte), compute the number of unique colors (★★★)
- # Author: Nadav Horesh
- w,h = 16,16
- I = np.random.randint(0,2,(h,w,3)).astype(np.ubyte)
- F = I[...,0]*256*256 + I[...,1]*256 +I[...,2]
- n = len(np.unique(F))
- print(np.unique(I))
Considering a four dimensions array, how to get sum over the last two axis at once ? (★★★)
- A = np.random.randint(0,10,(3,4,3,4))
- sum = A.reshape(A.shape[:-2] + (-1,)).sum(axis=-1)
- print(sum)
- A = np.random.randint(0,10,(3,4,3,4))
Considering a one-dimensional vector D, how to compute means of subsets of D using a vector S of same size describing subset indices ? (★★★)
- # Author: Jaime Fernández del Río
- D = np.random.uniform(0,1,100)
- S = np.random.randint(0,10,100)
- D_sums = np.bincount(S, weights=D)
- D_counts = np.bincount(S)
- D_means = D_sums / D_counts
- print(D_means)
How to get the diagonal of a dot product ? (★★★)
- # Author: Mathieu Blondel
- # Slow version
- np.diag(np.dot(A, B))
- # Fast version
- np.sum(A * B.T, axis=1)
- # Faster version
- np.einsum("ij,ji->i", A, B).
Consider the vector [1, 2, 3, 4, 5], how to build a new vector with 3 consecutive zeros interleaved between each value ? (★★★)
- # Author: Warren Weckesser
- Z = np.array([1,2,3,4,5])
- nz = 3
- Z0 = np.zeros(len(Z) + (len(Z)-1)*(nz))
- Z0[::nz+1] = Z
- print(Z0)
Consider an array of dimension (5,5,3), how to mulitply it by an array with dimensions (5,5) ? (★★★)
- A = np.ones((5,5,3))
- B = 2*np.ones((5,5))
- print(A * B[:,:,None])
- A = np.ones((5,5,3))
How to swap two rows of an array ? (★★★)
- # Author: Eelco Hoogendoorn
- A = np.arange(25).reshape(5,5)
- A[[0,1]] = A[[1,0]]
- print(A)
Consider a set of 10 triplets describing 10 triangles (with shared vertices), find the set of unique line segments composing all the triangles (★★★)
- # Author: Nicolas P. Rougier
- faces = np.random.randint(0,100,(10,3))
- F = np.roll(faces.repeat(2,axis=1),-1,axis=1)
- F = F.reshape(len(F)*3,2)
- F = np.sort(F,axis=1)
- G = F.view( dtype=[('p0',F.dtype),('p1',F.dtype)] )
- G = np.unique(G)
- print(G)
Given an array C that is a bincount, how to produce an array A such that np.bincount(A) == C ? (★★★)
- # Author: Jaime Fernández del Río
- C = np.bincount([1,1,2,3,4,4,6])
- A = np.repeat(np.arange(len(C)), C)
- print(A)
How to compute averages using a sliding window over an array ? (★★★)
- # Author: Jaime Fernández del Río
- def moving_average(a, n=3) :
- ret = np.cumsum(a, dtype=float)
- ret[n:] = ret[n:] - ret[:-n]
- return ret[n - 1:] / n
- Z = np.arange(20)
- print(moving_average(Z, n=3))
Consider a one-dimensional array Z, build a two-dimensional array whose first row is (Z[0],Z[1],Z[2]) and each subsequent row is shifted by 1 (last row should be (Z[-3],Z[-2],Z[-1]) (★★★)
- # Author: Joe Kington / Erik Rigtorp
- from numpy.lib import stride_tricks
- def rolling(a, window):
- shape = (a.size - window + 1, window)
- strides = (a.itemsize, a.itemsize)
- return stride_tricks.as_strided(a, shape=shape, strides=strides)
- Z = rolling(np.arange(10), 3)
- print(Z)
- # Author: Joe Kington / Erik Rigtorp
How to negate a boolean, or to change the sign of a float inplace ? (★★★)
- # Author: Nathaniel J. Smith
- Z = np.random.randint(0,2,100)
- np.logical_not(arr, out=arr)
- Z = np.random.uniform(-1.0,1.0,100)
- np.negative(arr, out=arr)
Consider 2 sets of points P0,P1 describing lines (2d) and a point p, how to compute distance from p to each line i (P0[i],P1[i]) ? (★★★)
- def distance(P0, P1, p):
- T = P1 - P0
- L = (T**2).sum(axis=1)
- U = -((P0[:,0]-p[...,0])*T[:,0] + (P0[:,1]-p[...,1])*T[:,1]) / L
- U = U.reshape(len(U),1)
- D = P0 + U*T - p
- return np.sqrt((D**2).sum(axis=1))
- P0 = np.random.uniform(-10,10,(10,2))
- P1 = np.random.uniform(-10,10,(10,2))
- p = np.random.uniform(-10,10,( 1,2))
- print(distance(P0, P1, p))
- def distance(P0, P1, p):
Consider 2 sets of points P0,P1 describing lines (2d) and a set of points P, how to compute distance from each point j (P[j]) to each line i (P0[i],P1[i]) ? (★★★)
- # Author: Italmassov Kuanysh
- # based on distance function from previous question
- P0 = np.random.uniform(-10, 10, (10,2))
- P1 = np.random.uniform(-10,10,(10,2))
- p = np.random.uniform(-10, 10, (10,2))
- print np.array([distance(P0,P1,p_i) for p_i in p])
- # Author: Italmassov Kuanysh
Consider an arbitrary array, write a function that extract a subpart with a fixed shape and centered on a given element (pad with a fill value when necessary) (★★★)
- # Author: Nicolas Rougier
- Z = np.random.randint(0,10,(10,10))
- shape = (5,5)
- fill = 0
- position = (1,1)
- R = np.ones(shape, dtype=Z.dtype)*fill
- P = np.array(list(position)).astype(int)
- Rs = np.array(list(R.shape)).astype(int)
- Zs = np.array(list(Z.shape)).astype(int)
- R_start = np.zeros((len(shape),)).astype(int)
- R_stop = np.array(list(shape)).astype(int)
- Z_start = (P-Rs//2)
- Z_stop = (P+Rs//2)+Rs%2
- R_start = (R_start - np.minimum(Z_start,0)).tolist()
- Z_start = (np.maximum(Z_start,0)).tolist()
- R_stop = np.maximum(R_start, (R_stop - np.maximum(Z_stop-Zs,0))).tolist()
- Z_stop = (np.minimum(Z_stop,Zs)).tolist()
- r = [slice(start,stop) for start,stop in zip(R_start,R_stop)]
- z = [slice(start,stop) for start,stop in zip(Z_start,Z_stop)]
- R[r] = Z[z]
- print(Z)
- print(R)
Consider an array Z = [1,2,3,4,5,6,7,8,9,10,11,12,13,14], how to generate an array R = [[1,2,3,4], [2,3,4,5], [3,4,5,6], ..., [11,12,13,14]] ? (★★★)
- # Author: Stefan van der Walt
- Z = np.arange(1,15,dtype=uint32)
- R = stride_tricks.as_strided(Z,(11,4),(4,4))
- print(R)
Compute a matrix rank (★★★)
- # Author: Stefan van der Walt
- Z = np.random.uniform(0,1,(10,10))
- U, S, V = np.linalg.svd(Z) # Singular Value Decomposition
- rank = np.sum(S > 1e-10)
How to find the most frequent value in an array ?
- Z = np.random.randint(0,10,50)
- print(np.bincount(Z).argmax())
- Z = np.random.randint(0,10,50)
Extract all the contiguous 3x3 blocks from a random 10x10 matrix (★★★)
- # Author: Chris Barker
- Z = np.random.randint(0,5,(10,10))
- n = 3
- i = 1 + (Z.shape[0]-3)
- j = 1 + (Z.shape[1]-3)
- C = stride_tricks.as_strided(Z, shape=(i, j, n, n), strides=Z.strides + Z.strides)
- print(C)
Create a 2D array subclass such that Z[i,j] == Z[j,i] (★★★)
- # Author: Eric O. Lebigot
- # Note: only works for 2d array and value setting using indices
- class Symetric(np.ndarray):
- def __setitem__(self, (i,j), value):
- super(Symetric, self).__setitem__((i,j), value)
- super(Symetric, self).__setitem__((j,i), value)
- def symetric(Z):
- return np.asarray(Z + Z.T - np.diag(Z.diagonal())).view(Symetric)
- S = symetric(np.random.randint(0,10,(5,5)))
- S[2,3] = 42
- print(S)
- # Author: Eric O. Lebigot
Consider a set of p matrices wich shape (n,n) and a set of p vectors with shape (n,1). How to compute the sum of of the p matrix products at once ? (result has shape (n,1)) (★★★)
- # Author: Stefan van der Walt
- p, n = 10, 20
- M = np.ones((p,n,n))
- V = np.ones((p,n,1))
- S = np.tensordot(M, V, axes=[[0, 2], [0, 1]])
- print(S)
- # It works, because:
- # M is (p,n,n)
- # V is (p,n,1)
- # Thus, summing over the paired axes 0 and 0 (of M and V independently),
- # and 2 and 1, to remain with a (n,1) vector.
Consider a 16x16 array, how to get the block-sum (block size is 4x4) ? (★★★)
- # Author: Robert Kern
- Z = np.ones(16,16)
- k = 4
- S = np.add.reduceat(np.add.reduceat(Z, np.arange(0, Z.shape[0], k), axis=0),
- np.arange(0, Z.shape[1], k), axis=1)
How to implement the Game of Life using numpy arrays ? (★★★)
- # Author: Nicolas Rougier
- def iterate(Z):
- # Count neighbours
- N = (Z[0:-2,0:-2] + Z[0:-2,1:-1] + Z[0:-2,2:] +
- Z[1:-1,0:-2] + Z[1:-1,2:] +
- Z[2: ,0:-2] + Z[2: ,1:-1] + Z[2: ,2:])
- # Apply rules
- birth = (N==3) & (Z[1:-1,1:-1]==0)
- survive = ((N==2) | (N==3)) & (Z[1:-1,1:-1]==1)
- Z[...] = 0
- Z[1:-1,1:-1][birth | survive] = 1
- return Z
- Z = np.random.randint(0,2,(50,50))
- for i in range(100): Z = iterate(Z)
How to get the n largest values of an array (★★★)
- Z = np.arange(10000)
- np.random.shuffle(Z)
- n = 5
- # Slow
- print (Z[np.argsort(Z)[-n:]])
- # Fast
- print (Z[np.argpartition(-Z,n)[:n]])
- Z = np.arange(10000)
Given an arbitrary number of vectors, build the cartesian product (every combinations of every item) (★★★)
- # Author: Stefan Van der Walt
- def cartesian(arrays):
- arrays = [np.asarray(a) for a in arrays]
- shape = (len(x) for x in arrays)
- ix = np.indices(shape, dtype=int)
- ix = ix.reshape(len(arrays), -1).T
- for n, arr in enumerate(arrays):
- ix[:, n] = arrays[n][ix[:, n]]
- return ix
- print (cartesian(([1, 2, 3], [4, 5], [6, 7])))
How to create a record array from a regular array ? (★★★)
- Z = np.array([("Hello", 2.5, 3),
- ("World", 3.6, 2)])
- R = np.core.records.fromarrays(Z.T,
- names='col1, col2, col3',
- formats = 'S8, f8, i8')
- Z = np.array([("Hello", 2.5, 3),
Comsider a large vector Z, compute Z to the power of 3 using 3 different methods (★★★)
- Author: Ryan G.
- x = np.random.rand(5e7)
- %timeit np.power(x,3)
- 1 loops, best of 3: 574 ms per loop
- %timeit x*x*x
- 1 loops, best of 3: 429 ms per loop
- %timeit np.einsum('i,i,i->i',x,x,x)
- 1 loops, best of 3: 244 ms per loop
Consider two arrays A and B of shape (8,3) and (2,2). How to find rows of A that contain elements of each row of B regardless of the order of the elements in B ? (★★★)
- # Author: Gabe Schwartz
- A = np.random.randint(0,5,(8,3))
- B = np.random.randint(0,5,(2,2))
- C = (A[..., np.newaxis, np.newaxis] == B)
- rows = (C.sum(axis=(1,2,3)) >= B.shape[1]).nonzero()[0]
- print(rows)
Considering a 10x3 matrix, extract rows with unequal values (e.g. [2,2,3]) (★★★)
- # Author: Robert Kern
- Z = np.random.randint(0,5,(10,3))
- E = np.logical_and.reduce(Z[:,1:] == Z[:,:-1], axis=1)
- U = Z[~E]
- print(Z)
- print(U)
Convert a vector of ints into a matrix binary representation (★★★)
- # Author: Warren Weckesser
- I = np.array([0, 1, 2, 3, 15, 16, 32, 64, 128])
- B = ((I.reshape(-1,1) & (2**np.arange(8))) != 0).astype(int)
- print(B[:,::-1])
- # Author: Daniel T. McDonald
- I = np.array([0, 1, 2, 3, 15, 16, 32, 64, 128], dtype=np.uint8)
- print(np.unpackbits(I[:, np.newaxis], axis=1))
Given a two dimensional array, how to extract unique rows ? (★★★)
- # Author: Jaime Fernández del Río
- Z = np.random.randint(0,2,(6,3))
- T = np.ascontiguousarray(Z).view(np.dtype((np.void, Z.dtype.itemsize * Z.shape[1])))
- _, idx = np.unique(T, return_index=True)
- uZ = Z[idx]
- print(uZ)
Considering 2 vectors A & B, write the einsum equivalent of inner, outer, sum, and mul function (★★★)
- # Author: Alex Riley
- # Make sure to read: http://ajcr.net/Basic-guide-to-einsum/
- np.einsum('i->', A) # np.sum(A)
- np.einsum('i,i->i', A, B) # A * B
- np.einsum('i,i', A, B) # np.inner(A, B)
- np.einsum('i,j', A, B) # np.outer(A, B)
- # Author: Alex Riley
Considering a path described by two vectors (X,Y), how to sample it using equidistant samples (★★★) ?
- # Author: Bas Swinckels
- phi = np.arange(0, 10*np.pi, 0.1)
- a = 1
- x = a*phi*np.cos(phi)
- y = a*phi*np.sin(phi)
- dr = (np.diff(x)**2 + np.diff(y)**2)**.5 # segment lengths
- r = np.zeros_like(x)
- r[1:] = np.cumsum(dr) # integrate path
- r_int = np.linspace(0, r.max(), 200) # regular spaced path
- x_int = np.interp(r_int, r, x) # integrate path
- y_int = np.interp(r_int, r, y)
100 numpy exercises的更多相关文章
- Python之Numpy详细教程
NumPy - 简介 NumPy 是一个 Python 包. 它代表 “Numeric Python”. 它是一个由多维数组对象和用于处理数组的例程集合组成的库. Numeric,即 NumPy 的前 ...
- Python: NumPy, Pandas学习资料
NumPy 学习资料 书籍 NumPy Cookbook_[Idris2012] NumPy Beginner's Guide,3rd_[Idris2015] Python数据分析基础教程:NumPy ...
- 利用Python,四步掌握机器学习
为了理解和应用机器学习技术,你需要学习 Python 或者 R.这两者都是与 C.Java.PHP 相类似的编程语言.但是,因为 Python 与 R 都比较年轻,而且更加“远离”CPU,所以它们显得 ...
- 利用python 掌握机器学习的过程
转载:http://python.jobbole.com/84326/ 偶然看到的这篇文章,觉得对我挺有引导作用的.特此跟大家分享一下. 为了理解和应用机器学习技术,你需要学习 Python 或者 R ...
- [转]numpy 100道练习题
100 numpy exercise 翻译:YingJoy 网址: https://www.yingjoy.cn/ 来源:https://github.com/rougier/numpy-100 Nu ...
- Python 数据科学系列 の Numpy、Series 和 DataFrame介绍
本課主題 Numpy 的介绍和操作实战 Series 的介绍和操作实战 DataFrame 的介绍和操作实战 Numpy 的介绍和操作实战 numpy 是 Python 在数据计算领域里很常用的模块 ...
- array numpy 模块
高级用法:http://www.jb51.net/article/87987.htm from array import * 调用 array 与 import numpy as np 调用 np. ...
- ubuntu16.04 安装opencv3
(opencvC++) luo@luo-ThinkPad-W540:20181205$ conda install --channel https://conda.anaconda.org/menpo ...
- 1000个经常使用的Python库和演示样例代码
以下是programcreek.com通过分析大量开源码,提取出的最经常使用的python库. 1. sys (4627) 2. os (4088) 3. re (3563) 4 ...
随机推荐
- SpringMVC中的视图和视图解析器
对于控制器的目标方法,无论其返回值是String.View.ModelMap或是ModelAndView,SpringMVC都会在内部将它们封装为一个ModelAndView对象进行返回. Spri ...
- C# 控制反转(IOC: Inverse Of Control) & 依赖注入(DI: Independence Inject)
举例:在每天的日常生活中,我们离不开水,电,气.在城市化之前,我们每家每户需要自己去搞定这些东西:自己挖水井取水,自己点煤油灯照明,自己上山砍柴做饭.而城市化之后,人们从这些琐事中解放了出来,城市中出 ...
- toTop插件(三)
前言 当窗体内容过多会出现滚动, 点击回到顶部滚动条在在上边(大家都懂得,我语文学的不好,表达不清^_^) 看代码 CSS : .toTop{ position: fixed; width: 50px ...
- python 基础内置函数表及简单介绍
内建函数名 (表达形式) 主要作用 备注 abs(x) 返回一个X值得绝对值(x=int/float/复数) all(iterable) 如果 iterable 的所有元素均为 True(或 iter ...
- Dropping Balls UVA - 679(二叉树的遍历)
题目链接:https://vjudge.net/problem/UVA-679 题目大意:t组样例,每组包括D M 层数是D 问第M个小球落在哪个叶子节点? 每个节点有开关 刚开始全都 ...
- Matrix Chain Multiplication (堆栈)
题目链接:https://vjudge.net/problem/UVA-442 题目大意:输入n个矩阵的维度和一些矩阵链乘表达式,输出乘法的次数.如果乘法无法进行,输出error. 假定A是m*n的矩 ...
- Nginx + Keepalived 实例(测试可行)
Nginx_Master: 192.168.1.103 提供负载均衡 Nginx_BackUp: 192.168.1.104 负载均衡备机 Nginx_VIP_TP: 192.168.1.108 网站 ...
- POJ 1182——食物链——————【种类并查集】
食物链 Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%I64d & %I64u Submit Status P ...
- 详细记录vue项目实战步骤(含vue-cli脚手架)
一.通过vue-cli创建了一个demo. (vue-cli是快速构建这个单页应用的脚手架,本身继承了多种项目模板:webpack(含eslit,unit)和webpack-simple(无eslin ...
- 微信小程序可用的第三方库
1.wxDraw 轻量的小程序canvas动画库,专门用于处理小程序上canvas 的图形创建.图形动画,以及交互问题. 链接:http://project.ueflat.xyz/#/ 2.ZanUi ...