100 numpy exercises
100 numpy exercises
A joint effort of the numpy community
The goal is both to offer a quick reference for new and old users and to provide also a set of exercices for those who teach. If you remember having asked or answered a (short) problem, you can send a pull request. The format is:
#. Find indices of non-zero elements from [1,2,0,0,4,0] .. code:: python # Author: Somebody print(np.nonzero([1,2,0,0,4,0]))
Here is what the page looks like so far: http://www.labri.fr/perso/nrougier/teaching/numpy.100/index.html
Repository is at: https://github.com/rougier/numpy-100
Thanks to Michiaki Ariga, there is now a Julia version.
Import the numpy package under the name np (★☆☆)
import numpy as np
Print the numpy version and the configuration (★☆☆)
print(np.__version__)
np.__config__.show()Create a null vector of size 10 (★☆☆)
Z = np.zeros(10)
print(Z)How to get the documentation of the numpy add function from the command line ? (★☆☆)
python -c "import numpy; numpy.info(numpy.add)"
Create a null vector of size 10 but the fifth value which is 1 (★☆☆)
Z = np.zeros(10)
Z[4] = 1
print(Z)Create a vector with values ranging from 10 to 49 (★☆☆)
Z = np.arange(10,50)
print(Z)Reverse a vector (first element becomes last) (★☆☆)
Z = np.arange(50)
Z = Z[::-1]Create a 3x3 matrix with values ranging from 0 to 8 (★☆☆)
Z = np.arange(9).reshape(3,3)
print(Z)Find indices of non-zero elements from [1,2,0,0,4,0] (★☆☆)
nz = np.nonzero([1,2,0,0,4,0])
print(nz)Create a 3x3 identity matrix (★☆☆)
Z = np.eye(3)
print(Z)Create a 3x3x3 array with random values (★☆☆)
Z = np.random.random((3,3,3))
print(Z)Create a 10x10 array with random values and find the minimum and maximum values (★☆☆)
Z = np.random.random((10,10))
Zmin, Zmax = Z.min(), Z.max()
print(Zmin, Zmax)Create a random vector of size 30 and find the mean value (★☆☆)
Z = np.random.random(30)
m = Z.mean()
print(m)Create a 2d array with 1 on the border and 0 inside (★☆☆)
Z = np.ones((10,10))
Z[1:-1,1:-1] = 0What is the result of the following expression ? (★☆☆)
0 * np.nan
np.nan == np.nan
np.inf > np.nan
np.nan - np.nan
0.3 == 3 * 0.1Create a 5x5 matrix with values 1,2,3,4 just below the diagonal (★☆☆)
Z = np.diag(1+np.arange(4),k=-1)
print(Z)Create a 8x8 matrix and fill it with a checkerboard pattern (★☆☆)
Z = np.zeros((8,8),dtype=int)
Z[1::2,::2] = 1
Z[::2,1::2] = 1
print(Z)Consider a (6,7,8) shape array, what is the index (x,y,z) of the 100th element ?
print(np.unravel_index(100,(6,7,8)))
Create a checkerboard 8x8 matrix using the tile function (★☆☆)
Z = np.tile( np.array([[0,1],[1,0]]), (4,4))
print(Z)Normalize a 5x5 random matrix (★☆☆)
Z = np.random.random((5,5))
Zmax, Zmin = Z.max(), Z.min()
Z = (Z - Zmin)/(Zmax - Zmin)
print(Z)Multiply a 5x3 matrix by a 3x2 matrix (real matrix product) (★☆☆)
Z = np.dot(np.ones((5,3)), np.ones((3,2)))
print(Z)Create a 5x5 matrix with row values ranging from 0 to 4 (★★☆)
Z = np.zeros((5,5))
Z += np.arange(5)
print(Z)Consider a generator function that generates 10 integers and use it to build an array (★☆☆)
def generate():
for x in xrange(10):
yield x
Z = np.fromiter(generate(),dtype=float,count=-1)
print(Z)Create a vector of size 10 with values ranging from 0 to 1, both excluded (★★☆)
Z = np.linspace(0,1,12,endpoint=True)[1:-1]
print(Z)Create a random vector of size 10 and sort it (★★☆)
Z = np.random.random(10)
Z.sort()
print(Z)Consider two random array A anb B, check if they are equal (★★☆)
A = np.random.randint(0,2,5)
B = np.random.randint(0,2,5)
equal = np.allclose(A,B)
print(equal)Make an array immutable (read-only) (★★☆)
Z = np.zeros(10)
Z.flags.writeable = False
Z[0] = 1Consider a random 10x2 matrix representing cartesian coordinates, convert them to polar coordinates (★★☆)
Z = np.random.random((10,2))
X,Y = Z[:,0], Z[:,1]
R = np.sqrt(X**2+Y**2)
T = np.arctan2(Y,X)
print(R)
print(T)Create random vector of size 10 and replace the maximum value by 0 (★★☆)
Z = np.random.random(10)
Z[Z.argmax()] = 0
print(Z)Create a structured array with x and y coordinates covering the [0,1]x[0,1] area (★★☆)
Z = np.zeros((10,10), [('x',float),('y',float)])
Z['x'], Z['y'] = np.meshgrid(np.linspace(0,1,10),
np.linspace(0,1,10))
print(Z)Print the minimum and maximum representable value for each numpy scalar type (★★☆)
for dtype in [np.int8, np.int32, np.int64]:
print(np.iinfo(dtype).min)
print(np.iinfo(dtype).max)
for dtype in [np.float32, np.float64]:
print(np.finfo(dtype).min)
print(np.finfo(dtype).max)
print(np.finfo(dtype).eps)How to print all the values of an array ? (★★☆)
np.set_printoptions(threshold=np.nan)
Z = np.zeros((25,25))
print(Z)How to print all the values of an array ? (★★☆)
np.set_printoptions(threshold=np.nan)
Z = np.zeros((25,25))
print(Z)How to find the closest value (to a given scalar) in an array ? (★★☆)
Z = np.arange(100)
v = np.random.uniform(0,100)
index = (np.abs(Z-v)).argmin()
print(Z[index])Create a structured array representing a position (x,y) and a color (r,g,b) (★★☆)
Z = np.zeros(10, [ ('position', [ ('x', float, 1),
('y', float, 1)]),
('color', [ ('r', float, 1),
('g', float, 1),
('b', float, 1)])])
print(Z)Consider a random vector with shape (100,2) representing coordinates, find point by point distances (★★☆)
Z = np.random.random((10,2))
X,Y = np.atleast_2d(Z[:,0]), np.atleast_2d(Z[:,1])
D = np.sqrt( (X-X.T)**2 + (Y-Y.T)**2)
print(D) # Much faster with scipy
import scipy
# Thanks Gavin Heverly-Coulson (#issue 1)
import scipy.spatial Z = np.random.random((10,2))
D = scipy.spatial.distance.cdist(Z,Z)
print(D)How to convert a float (32 bits) array into an integer (32 bits) in place ?
Z = np.arange(10, dtype=np.int32)
Z = Z.astype(np.float32, copy=False)Consider the following file:
1,2,3,4,5
6,,,7,8
,,9,10,11How to read it ? (★★☆)
Z = np.genfromtxt("missing.dat", delimiter=",")
What is the equivalent of enumerate for numpy arrays ? (★★☆)
Z = np.arange(9).reshape(3,3)
for index, value in np.ndenumerate(Z):
print(index, value)
for index in np.ndindex(Z.shape):
print(index, Z[index])Generate a generic 2D Gaussian-like array (★★☆)
X, Y = np.meshgrid(np.linspace(-1,1,10), np.linspace(-1,1,10))
D = np.sqrt(X*X+Y*Y)
sigma, mu = 1.0, 0.0
G = np.exp(-( (D-mu)**2 / ( 2.0 * sigma**2 ) ) )
print(G)How to randomly place p elements in a 2D array ? (★★☆)
# Author: Divakar n = 10
p = 3
Z = np.zeros((n,n))
np.put(Z, np.random.choice(range(n*n), p, replace=False),1)Subtract the mean of each row of a matrix (★★☆)
# Author: Warren Weckesser X = np.random.rand(5, 10) # Recent versions of numpy
Y = X - X.mean(axis=1, keepdims=True) # Older versions of numpy
Y = X - X.mean(axis=1).reshape(-1, 1)How to I sort an array by the nth column ? (★★☆)
# Author: Steve Tjoa Z = np.random.randint(0,10,(3,3))
print(Z)
print(Z[Z[:,1].argsort()])How to tell if a given 2D array has null columns ? (★★☆)
# Author: Warren Weckesser Z = np.random.randint(0,3,(3,10))
print((~Z.any(axis=0)).any())Find the nearest value from a given value in an array (★★☆)
Z = np.random.uniform(0,1,10)
z = 0.5
m = Z.flat[np.abs(Z - z).argmin()]
print(m)Consider a given vector, how to add 1 to each element indexed by a second vector (be careful with repeated indices) ? (★★★)
# Author: Brett Olsen Z = np.ones(10)
I = np.random.randint(0,len(Z),20)
Z += np.bincount(I, minlength=len(Z))
print(Z)How to accumulate elements of a vector (X) to an array (F) based on an index list (I) ? (★★★)
# Author: Alan G Isaac X = [1,2,3,4,5,6]
I = [1,3,9,3,4,1]
F = np.bincount(I,X)
print(F)Considering a (w,h,3) image of (dtype=ubyte), compute the number of unique colors (★★★)
# Author: Nadav Horesh w,h = 16,16
I = np.random.randint(0,2,(h,w,3)).astype(np.ubyte)
F = I[...,0]*256*256 + I[...,1]*256 +I[...,2]
n = len(np.unique(F))
print(np.unique(I))Considering a four dimensions array, how to get sum over the last two axis at once ? (★★★)
A = np.random.randint(0,10,(3,4,3,4))
sum = A.reshape(A.shape[:-2] + (-1,)).sum(axis=-1)
print(sum)Considering a one-dimensional vector D, how to compute means of subsets of D using a vector S of same size describing subset indices ? (★★★)
# Author: Jaime Fernández del Río D = np.random.uniform(0,1,100)
S = np.random.randint(0,10,100)
D_sums = np.bincount(S, weights=D)
D_counts = np.bincount(S)
D_means = D_sums / D_counts
print(D_means)How to get the diagonal of a dot product ? (★★★)
# Author: Mathieu Blondel # Slow version
np.diag(np.dot(A, B)) # Fast version
np.sum(A * B.T, axis=1) # Faster version
np.einsum("ij,ji->i", A, B).Consider the vector [1, 2, 3, 4, 5], how to build a new vector with 3 consecutive zeros interleaved between each value ? (★★★)
# Author: Warren Weckesser Z = np.array([1,2,3,4,5])
nz = 3
Z0 = np.zeros(len(Z) + (len(Z)-1)*(nz))
Z0[::nz+1] = Z
print(Z0)Consider an array of dimension (5,5,3), how to mulitply it by an array with dimensions (5,5) ? (★★★)
A = np.ones((5,5,3))
B = 2*np.ones((5,5))
print(A * B[:,:,None])How to swap two rows of an array ? (★★★)
# Author: Eelco Hoogendoorn A = np.arange(25).reshape(5,5)
A[[0,1]] = A[[1,0]]
print(A)Consider a set of 10 triplets describing 10 triangles (with shared vertices), find the set of unique line segments composing all the triangles (★★★)
# Author: Nicolas P. Rougier faces = np.random.randint(0,100,(10,3))
F = np.roll(faces.repeat(2,axis=1),-1,axis=1)
F = F.reshape(len(F)*3,2)
F = np.sort(F,axis=1)
G = F.view( dtype=[('p0',F.dtype),('p1',F.dtype)] )
G = np.unique(G)
print(G)Given an array C that is a bincount, how to produce an array A such that np.bincount(A) == C ? (★★★)
# Author: Jaime Fernández del Río C = np.bincount([1,1,2,3,4,4,6])
A = np.repeat(np.arange(len(C)), C)
print(A)How to compute averages using a sliding window over an array ? (★★★)
# Author: Jaime Fernández del Río def moving_average(a, n=3) :
ret = np.cumsum(a, dtype=float)
ret[n:] = ret[n:] - ret[:-n]
return ret[n - 1:] / n
Z = np.arange(20)
print(moving_average(Z, n=3))Consider a one-dimensional array Z, build a two-dimensional array whose first row is (Z[0],Z[1],Z[2]) and each subsequent row is shifted by 1 (last row should be (Z[-3],Z[-2],Z[-1]) (★★★)
# Author: Joe Kington / Erik Rigtorp
from numpy.lib import stride_tricks def rolling(a, window):
shape = (a.size - window + 1, window)
strides = (a.itemsize, a.itemsize)
return stride_tricks.as_strided(a, shape=shape, strides=strides)
Z = rolling(np.arange(10), 3)
print(Z)How to negate a boolean, or to change the sign of a float inplace ? (★★★)
# Author: Nathaniel J. Smith Z = np.random.randint(0,2,100)
np.logical_not(arr, out=arr) Z = np.random.uniform(-1.0,1.0,100)
np.negative(arr, out=arr)Consider 2 sets of points P0,P1 describing lines (2d) and a point p, how to compute distance from p to each line i (P0[i],P1[i]) ? (★★★)
def distance(P0, P1, p):
T = P1 - P0
L = (T**2).sum(axis=1)
U = -((P0[:,0]-p[...,0])*T[:,0] + (P0[:,1]-p[...,1])*T[:,1]) / L
U = U.reshape(len(U),1)
D = P0 + U*T - p
return np.sqrt((D**2).sum(axis=1)) P0 = np.random.uniform(-10,10,(10,2))
P1 = np.random.uniform(-10,10,(10,2))
p = np.random.uniform(-10,10,( 1,2))
print(distance(P0, P1, p))Consider 2 sets of points P0,P1 describing lines (2d) and a set of points P, how to compute distance from each point j (P[j]) to each line i (P0[i],P1[i]) ? (★★★)
# Author: Italmassov Kuanysh
# based on distance function from previous question
P0 = np.random.uniform(-10, 10, (10,2))
P1 = np.random.uniform(-10,10,(10,2))
p = np.random.uniform(-10, 10, (10,2))
print np.array([distance(P0,P1,p_i) for p_i in p])Consider an arbitrary array, write a function that extract a subpart with a fixed shape and centered on a given element (pad with a fill value when necessary) (★★★)
# Author: Nicolas Rougier Z = np.random.randint(0,10,(10,10))
shape = (5,5)
fill = 0
position = (1,1) R = np.ones(shape, dtype=Z.dtype)*fill
P = np.array(list(position)).astype(int)
Rs = np.array(list(R.shape)).astype(int)
Zs = np.array(list(Z.shape)).astype(int) R_start = np.zeros((len(shape),)).astype(int)
R_stop = np.array(list(shape)).astype(int)
Z_start = (P-Rs//2)
Z_stop = (P+Rs//2)+Rs%2 R_start = (R_start - np.minimum(Z_start,0)).tolist()
Z_start = (np.maximum(Z_start,0)).tolist()
R_stop = np.maximum(R_start, (R_stop - np.maximum(Z_stop-Zs,0))).tolist()
Z_stop = (np.minimum(Z_stop,Zs)).tolist() r = [slice(start,stop) for start,stop in zip(R_start,R_stop)]
z = [slice(start,stop) for start,stop in zip(Z_start,Z_stop)]
R[r] = Z[z]
print(Z)
print(R)Consider an array Z = [1,2,3,4,5,6,7,8,9,10,11,12,13,14], how to generate an array R = [[1,2,3,4], [2,3,4,5], [3,4,5,6], ..., [11,12,13,14]] ? (★★★)
# Author: Stefan van der Walt Z = np.arange(1,15,dtype=uint32)
R = stride_tricks.as_strided(Z,(11,4),(4,4))
print(R)Compute a matrix rank (★★★)
# Author: Stefan van der Walt Z = np.random.uniform(0,1,(10,10))
U, S, V = np.linalg.svd(Z) # Singular Value Decomposition
rank = np.sum(S > 1e-10)How to find the most frequent value in an array ?
Z = np.random.randint(0,10,50)
print(np.bincount(Z).argmax())Extract all the contiguous 3x3 blocks from a random 10x10 matrix (★★★)
# Author: Chris Barker Z = np.random.randint(0,5,(10,10))
n = 3
i = 1 + (Z.shape[0]-3)
j = 1 + (Z.shape[1]-3)
C = stride_tricks.as_strided(Z, shape=(i, j, n, n), strides=Z.strides + Z.strides)
print(C)Create a 2D array subclass such that Z[i,j] == Z[j,i] (★★★)
# Author: Eric O. Lebigot
# Note: only works for 2d array and value setting using indices class Symetric(np.ndarray):
def __setitem__(self, (i,j), value):
super(Symetric, self).__setitem__((i,j), value)
super(Symetric, self).__setitem__((j,i), value) def symetric(Z):
return np.asarray(Z + Z.T - np.diag(Z.diagonal())).view(Symetric) S = symetric(np.random.randint(0,10,(5,5)))
S[2,3] = 42
print(S)Consider a set of p matrices wich shape (n,n) and a set of p vectors with shape (n,1). How to compute the sum of of the p matrix products at once ? (result has shape (n,1)) (★★★)
# Author: Stefan van der Walt p, n = 10, 20
M = np.ones((p,n,n))
V = np.ones((p,n,1))
S = np.tensordot(M, V, axes=[[0, 2], [0, 1]])
print(S) # It works, because:
# M is (p,n,n)
# V is (p,n,1)
# Thus, summing over the paired axes 0 and 0 (of M and V independently),
# and 2 and 1, to remain with a (n,1) vector.Consider a 16x16 array, how to get the block-sum (block size is 4x4) ? (★★★)
# Author: Robert Kern Z = np.ones(16,16)
k = 4
S = np.add.reduceat(np.add.reduceat(Z, np.arange(0, Z.shape[0], k), axis=0),
np.arange(0, Z.shape[1], k), axis=1)How to implement the Game of Life using numpy arrays ? (★★★)
# Author: Nicolas Rougier def iterate(Z):
# Count neighbours
N = (Z[0:-2,0:-2] + Z[0:-2,1:-1] + Z[0:-2,2:] +
Z[1:-1,0:-2] + Z[1:-1,2:] +
Z[2: ,0:-2] + Z[2: ,1:-1] + Z[2: ,2:]) # Apply rules
birth = (N==3) & (Z[1:-1,1:-1]==0)
survive = ((N==2) | (N==3)) & (Z[1:-1,1:-1]==1)
Z[...] = 0
Z[1:-1,1:-1][birth | survive] = 1
return Z Z = np.random.randint(0,2,(50,50))
for i in range(100): Z = iterate(Z)How to get the n largest values of an array (★★★)
Z = np.arange(10000)
np.random.shuffle(Z)
n = 5 # Slow
print (Z[np.argsort(Z)[-n:]]) # Fast
print (Z[np.argpartition(-Z,n)[:n]])Given an arbitrary number of vectors, build the cartesian product (every combinations of every item) (★★★)
# Author: Stefan Van der Walt def cartesian(arrays):
arrays = [np.asarray(a) for a in arrays]
shape = (len(x) for x in arrays) ix = np.indices(shape, dtype=int)
ix = ix.reshape(len(arrays), -1).T for n, arr in enumerate(arrays):
ix[:, n] = arrays[n][ix[:, n]] return ix print (cartesian(([1, 2, 3], [4, 5], [6, 7])))How to create a record array from a regular array ? (★★★)
Z = np.array([("Hello", 2.5, 3),
("World", 3.6, 2)])
R = np.core.records.fromarrays(Z.T,
names='col1, col2, col3',
formats = 'S8, f8, i8')Comsider a large vector Z, compute Z to the power of 3 using 3 different methods (★★★)
Author: Ryan G. x = np.random.rand(5e7) %timeit np.power(x,3)
1 loops, best of 3: 574 ms per loop %timeit x*x*x
1 loops, best of 3: 429 ms per loop %timeit np.einsum('i,i,i->i',x,x,x)
1 loops, best of 3: 244 ms per loopConsider two arrays A and B of shape (8,3) and (2,2). How to find rows of A that contain elements of each row of B regardless of the order of the elements in B ? (★★★)
# Author: Gabe Schwartz A = np.random.randint(0,5,(8,3))
B = np.random.randint(0,5,(2,2)) C = (A[..., np.newaxis, np.newaxis] == B)
rows = (C.sum(axis=(1,2,3)) >= B.shape[1]).nonzero()[0]
print(rows)Considering a 10x3 matrix, extract rows with unequal values (e.g. [2,2,3]) (★★★)
# Author: Robert Kern Z = np.random.randint(0,5,(10,3))
E = np.logical_and.reduce(Z[:,1:] == Z[:,:-1], axis=1)
U = Z[~E]
print(Z)
print(U)Convert a vector of ints into a matrix binary representation (★★★)
# Author: Warren Weckesser I = np.array([0, 1, 2, 3, 15, 16, 32, 64, 128])
B = ((I.reshape(-1,1) & (2**np.arange(8))) != 0).astype(int)
print(B[:,::-1]) # Author: Daniel T. McDonald I = np.array([0, 1, 2, 3, 15, 16, 32, 64, 128], dtype=np.uint8)
print(np.unpackbits(I[:, np.newaxis], axis=1))Given a two dimensional array, how to extract unique rows ? (★★★)
# Author: Jaime Fernández del Río Z = np.random.randint(0,2,(6,3))
T = np.ascontiguousarray(Z).view(np.dtype((np.void, Z.dtype.itemsize * Z.shape[1])))
_, idx = np.unique(T, return_index=True)
uZ = Z[idx]
print(uZ)Considering 2 vectors A & B, write the einsum equivalent of inner, outer, sum, and mul function (★★★)
# Author: Alex Riley
# Make sure to read: http://ajcr.net/Basic-guide-to-einsum/ np.einsum('i->', A) # np.sum(A)
np.einsum('i,i->i', A, B) # A * B
np.einsum('i,i', A, B) # np.inner(A, B)
np.einsum('i,j', A, B) # np.outer(A, B)Considering a path described by two vectors (X,Y), how to sample it using equidistant samples (★★★) ?
# Author: Bas Swinckels phi = np.arange(0, 10*np.pi, 0.1)
a = 1
x = a*phi*np.cos(phi)
y = a*phi*np.sin(phi) dr = (np.diff(x)**2 + np.diff(y)**2)**.5 # segment lengths
r = np.zeros_like(x)
r[1:] = np.cumsum(dr) # integrate path
r_int = np.linspace(0, r.max(), 200) # regular spaced path
x_int = np.interp(r_int, r, x) # integrate path
y_int = np.interp(r_int, r, y)
100 numpy exercises的更多相关文章
- Python之Numpy详细教程
NumPy - 简介 NumPy 是一个 Python 包. 它代表 “Numeric Python”. 它是一个由多维数组对象和用于处理数组的例程集合组成的库. Numeric,即 NumPy 的前 ...
- Python: NumPy, Pandas学习资料
NumPy 学习资料 书籍 NumPy Cookbook_[Idris2012] NumPy Beginner's Guide,3rd_[Idris2015] Python数据分析基础教程:NumPy ...
- 利用Python,四步掌握机器学习
为了理解和应用机器学习技术,你需要学习 Python 或者 R.这两者都是与 C.Java.PHP 相类似的编程语言.但是,因为 Python 与 R 都比较年轻,而且更加“远离”CPU,所以它们显得 ...
- 利用python 掌握机器学习的过程
转载:http://python.jobbole.com/84326/ 偶然看到的这篇文章,觉得对我挺有引导作用的.特此跟大家分享一下. 为了理解和应用机器学习技术,你需要学习 Python 或者 R ...
- [转]numpy 100道练习题
100 numpy exercise 翻译:YingJoy 网址: https://www.yingjoy.cn/ 来源:https://github.com/rougier/numpy-100 Nu ...
- Python 数据科学系列 の Numpy、Series 和 DataFrame介绍
本課主題 Numpy 的介绍和操作实战 Series 的介绍和操作实战 DataFrame 的介绍和操作实战 Numpy 的介绍和操作实战 numpy 是 Python 在数据计算领域里很常用的模块 ...
- array numpy 模块
高级用法:http://www.jb51.net/article/87987.htm from array import * 调用 array 与 import numpy as np 调用 np. ...
- ubuntu16.04 安装opencv3
(opencvC++) luo@luo-ThinkPad-W540:20181205$ conda install --channel https://conda.anaconda.org/menpo ...
- 1000个经常使用的Python库和演示样例代码
以下是programcreek.com通过分析大量开源码,提取出的最经常使用的python库. 1. sys (4627) 2. os (4088) 3. re (3563) 4 ...
随机推荐
- 关于处理百万级大批量数据的mysql运行几个重要点
处理大批量百万级的数据几点重要知识点: 一:设置php运行的内存配置 ini_set("memory_limit","1200M"); 在php.ini中有如下 ...
- git使用标准
git 使用规范 团队开发中,要遵循一个合理.清晰的git使用流程非常重要的.否则每个人提交一堆杂乱我长的commit,项目很快就变得难以协调和维护 第一步:创建新分支 首先,每一次开发新功能,都应该 ...
- js学习笔记 -- 随记
js不区分整数和浮点数,统一用Number表示, js'=='比较会自动转换类型,会产生奇怪结果,'==='不会转换比较类型,如果不一致返回false,因此js判断始终用'===' `` 保留换行,也 ...
- CENTOS7下安装REDIS4.0.11
拷贝收藏私用,别无他意,原博客地址: https://www.cnblogs.com/zuidongfeng/p/8032505.html 1.安装redis 第一步:下载redis安装包 wget ...
- XGBoost算法
一.基础知识 (1)泰勒公式 泰勒公式是一个用函数在某点的信息描述其附近取值的公式.具有局部有效性. 基本形式如下: 由以上的基本形式可知泰勒公式的迭代形式为: 以上这个迭代形式是针对二阶泰勒展开,你 ...
- shell 终端字符颜色
终端的字符颜色是用转义序列控制的,是文本模式下的系统显示功能,和具体的语言无关,shell,python,perl等均可以调用. 转义序列是以 ESC 开头,可以用 \033 完成相同的工作(ESC ...
- 用python处理时间、utf8文本、正则匹配、序列化、目录路径搜索、xml解析
python 处理时间 import time import re now = time.strftime("%Y-%m-%d %H:%M:%S", time.gmtime()) ...
- MOS管
mos工作原理:http://www.360doc.com/content/15/0930/11/28009762_502419576.shtml, 开关特性好,长用于开关电源马达驱动,CMOS相机场 ...
- (转)IBM AIX系统硬件信息查看命令(shell脚本)
IBM AIX系统硬件信息查看命令(shell脚本) 原文:http://blog.itpub.net/22085031/viewspace-1054015/ 查看IBM AIX系统的主机型号.序列号 ...
- (转) HTTP & HTTPS网络协议重点总结(基于SSL/TLS的握手、TCP/IP协议基础、加密学)
HTTP & HTTPS网络协议重点总结(基于SSL/TLS的握手.TCP/IP协议基础.加密学) 原文:http://blog.csdn.net/itermeng/article/detai ...