Description

Gigel has a strange "balance" and he wants to poise it. Actually, the device is different from any other ordinary balance. 
It orders two arms of negligible weight and each arm's length is 15. Some hooks are attached to these arms and Gigel wants to hang up some weights from his collection of G weights (1 <= G <= 20) knowing that these weights have distinct values in the range 1..25. Gigel may droop any weight of any hook but he is forced to use all the weights. 
Finally, Gigel managed to balance the device using the experience he gained at the National Olympiad in Informatics. Now he would like to know in how many ways the device can be balanced.

Knowing the repartition of the hooks and the set of the weights write a program that calculates the number of possibilities to balance the device. 
It is guaranteed that will exist at least one solution for each test case at the evaluation. 

Input

The input has the following structure: 
• the first line contains the number C (2 <= C <= 20) and the number G (2 <= G <= 20); 
• the next line contains C integer numbers (these numbers are also distinct and sorted in ascending order) in the range -15..15 representing the repartition of the hooks; each number represents the position relative to the center of the balance on the X axis (when no weights are attached the device is balanced and lined up to the X axis; the absolute value of the distances represents the distance between the hook and the balance center and the sign of the numbers determines the arm of the balance to which the hook is attached: '-' for the left arm and '+' for the right arm); 
• on the next line there are G natural, distinct and sorted in ascending order numbers in the range 1..25 representing the weights' values. 

Output

The output contains the number M representing the number of possibilities to poise the balance.

Sample Input

2 4
-2 3
3 4 5 8

Sample Output

2

Source

题意:

给你一些砝码与与挂钩,问使得天平横有多少种挂法

题解:

01背包变形,物品是砝码,重量就是 砝码的质量*力臂,而背包的能承受的重量为0,我们需要得到重量为0的方法数。

#include <cstdio>
#include <cstring>
using namespace std;
const int MAXN=15000; //15*20*25*2
long long dp[21][MAXN];//前者代表选取这个砝码,后者代表 挂钩*砝码
int main()
{
int c,g;
scanf("%d%d",&c,&g);
int x[21],w[21];
for (int i = 1; i <=c ; ++i) {
scanf("%d",&x[i]);
}
for (int j = 1; j<=g ; ++j) {
scanf("%d",&w[j]);
}
memset(dp,0, sizeof(dp));
dp[0][7500]=1; //选取有正有负,需要把加为正数。初始状态应为1,
for (int i = 1; i <=g ; ++i) {
for (int j = 0; j <15000 ; ++j) {
for (int k = 1; k <=c ; ++k) {
dp[i][j+x[k]*w[i]]+=dp[i-1][j];
}
}
}
printf("%lld\n",dp[g][7500]);
return 0;
}

  

Balance POJ - 1837的更多相关文章

  1. Balance POJ - 1837 地推

    Gigel has a strange "balance" and he wants to poise it. Actually, the device is different ...

  2. POJ 1837 -- Balance(DP)

     POJ 1837 -- Balance 转载:優YoU   http://user.qzone.qq.com/289065406/blog/1299341345 提示:动态规划,01背包 初看此题第 ...

  3. poj 1837 Balance(背包)

    题目链接:http://poj.org/problem?id=1837 Balance Time Limit: 1000MS   Memory Limit: 30000K Total Submissi ...

  4. POJ 1837 Balance 01背包

    题目: http://poj.org/problem?id=1837 感觉dp的题目都很难做,这道题如果不看题解不知道憋到毕业能不能做出来,转化成了01背包问题,很神奇.. #include < ...

  5. POJ 1837 Balance 水题, DP 难度:0

    题目 http://poj.org/problem?id=1837 题意 单组数据,有一根杠杆,有R个钩子,其位置hi为整数且属于[-15,15],有C个重物,其质量wi为整数且属于[1,25],重物 ...

  6. POJ 1837 Balance

    Balance Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 9240 Accepted: 5670 Description G ...

  7. POJ 1837 Balance(01背包变形, 枚举DP)

    Q: dp 数组应该怎么设置? A: dp[i][j] 表示前 i 件物品放入天平后形成平衡度为 j 的方案数 题意: 有一个天平, 天平的两侧可以挂上重物, 给定 C 个钩子和G个秤砣. 2 4 - ...

  8. [poj 1837] Balance dp

    Description Gigel has a strange "balance" and he wants to poise it. Actually, the device i ...

  9. poj 1837 Balance (0 1 背包)

    Balance Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 10326   Accepted: 6393 题意:给你n个挂 ...

随机推荐

  1. python反爬之封IP

    # requests是第三方库,需要安装 pip install requests import requests # 在日常的爬虫中,封ip也是一个很常用的反爬虫手段,遇到这种情况,我们只需要在每次 ...

  2. sass文件转css时注释虽然支持中文,但是出现乱码的解决方法

    sass文件转css时注释虽然支持中文,但是出现乱码的解决方法 Scss 注释中文报错问题(windows系统, 已解决)找到ruby的安装目录,里面也有sass模块,类似这样样的路径:F:\Prog ...

  3. 转:ArcGIS10.1正式版安装与破解

    一.准备文件 ArcGIS10.1安装包:ArcGIS_Desktop_10.1_129026(en) 认证服务:Pre-release_license_manager 注册机:arcgis10.1K ...

  4. Cordova各个插件使用介绍系列(七)—$cordovaStatusbar手机状态栏显示

    在项目中发现Android和iOS在手机状态栏样式不一样,然后就查到有一个cordova插件可以解决这个问题 1.下载插件$cordovaStatusbar命令: cordova plugin add ...

  5. So you want to write a desktop app in Python

    So you want to write a desktop app in Python Thomas Kluyver 2014-06-16 23:55 51 Comments Source This ...

  6. 出现Permission denied的解决办法

    出处 https://blog.csdn.net/qq_16525279/article/details/80245350 提示 Permission denied 解决的办法: $ sudo chm ...

  7. robotframework实战三--自定义关键字

    在rf的实战1中,我的登录获取验证码就使用了自定义关键字,具体怎么做的,如下 1.新建文件夹 新建一个文件夹,我的MyLibrary,并且存放在site-packages下 2.编写代码 在pytho ...

  8. firewalld 使用简介

    学习apache安装的时候需要打开80端口,由于centos 7版本以后默认使用firewalld后,网上关于iptables的设置方法已经不管用了,想着反正iptable也不会用,索性直接搬官方文档 ...

  9. Shiro Demo:SpringBoot+Shiro+Druid+MyBatis

    访问start.spring.io生成项目: 然后选择依赖: pom.xml: <?xml version="1.0" encoding="UTF-8"? ...

  10. 奇异值分解(SVD)原理及应用

    一.奇异值与特征值基础知识: 特征值分解和奇异值分解在机器学习领域都是属于满地可见的方法.两者有着很紧密的关系,我在接下来会谈到,特征值分解和奇异值分解的目的都是一样,就是提取出一个矩阵最重要的特征. ...