本原毕达哥拉斯三元组是由三个正整数x,y,z组成,且gcd(x,y,z)=1,x*x+y*y=z*z

对于所有的本原毕达哥拉斯三元组(a,b,c) (a*a+b*b=c*c,a与b必定奇偶互异,且c为奇数。这里我们设b为偶数)

则:和

a=st

b=(s*s-t*t)/2

c=(s*s+t*t)/2

其中s>t>=1且gcd(s,t)=1

是一一对应的。

看看别人得证明:

http://blog.csdn.net/loinus/article/details/7824841

看看我的证明

有了这个定理就这题就很好做了。

Fermat vs. Pythagoras
Time Limit: 2000MS   Memory Limit: 10000K
Total Submissions: 1456   Accepted: 848

Description

Computer generated and assisted proofs and verification occupy a small niche in the realm of Computer Science. The first proof of the four-color problem was completed with the assistance of a computer program and current efforts in verification have succeeded in verifying the translation of high-level code down to the chip level. 
This problem deals with computing quantities relating to part of Fermat's Last Theorem: that there are no integer solutions of a^n + b^n = c^n for n > 2. 
Given a positive integer N, you are to write a program that computes two quantities regarding the solution of x^2 + y^2 = z^2, where x, y, and z are constrained to be positive integers less than or equal to N. You are to compute the number of triples (x,y,z) such that x < y < z, and they are relatively prime, i.e., have no common divisor larger than 1. You are also to compute the number of values 0 < p <= N such that p is not part of any triple (not just relatively prime triples). 

Input

The input consists of a sequence of positive integers, one per line. Each integer in the input file will be less than or equal to 1,000,000. Input is terminated by end-of-file

Output

For each integer N in the input file print two integers separated by a space. The first integer is the number of relatively prime triples (such that each component of the triple is <=N). The second number is the number of positive integers <=N that are not part of any triple whose components are all <=N. There should be one output line for each input line.

Sample Input

10
25
100

Sample Output

1 4
4 9
16 27
//
// main.cpp
// poj1305
//
// Created by 陈加寿 on 15/11/30.
// Copyright (c) 2015年 陈加寿. All rights reserved.
// #include <iostream>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
using namespace std; int mark[]; long long gcd(long long a,long long b)
{
if(b==) return a;
return gcd(b,a%b);
} int main(int argc, const char * argv[]) {
int n;
while(cin>>n)
{
memset(mark,,sizeof(mark));
int cnt=;
for(long long i=;;i+=)
{
long long a,b,c;
if( (i*i+(i+)*(i+))/ >n ) break; for(long long j=i+;;j+=)
{
if(gcd(i,j)==)
{
c=(i*i+j*j)/;
b=(j*j-i*i)/;
a=i*j;
if(c>n) break;
cnt++;
for(long long k=;k*c<=n;k++)
{
mark[a*k]=;
mark[b*k]=;
mark[c*k]=;
}
}
}
}
int ans=;
for(int i=;i<=n;i++)
if(mark[i]==) ans++;
cout<<cnt<<" "<<ans<<endl;
}
return ;
}

毕达哥拉斯三元组(勾股数组)poj1305的更多相关文章

  1. Fermat vs. Pythagoras POJ - 1305 (数论之勾股数组(毕达哥拉斯三元组))

    题意:(a, b, c)为a2+b2=c2的一个解,那么求gcd(a, b, c)=1的组数,并且a<b<c<=n,和不为解中所含数字的个数,比如在n等于10时,为1, 2, 7,9 ...

  2. 勾股数组及其应用uva106

    勾股数组 设三元组(a,b,c)满足a^2 + b^2 = c^2的勾股数组,那么是否存在无穷多个勾股数组呢, 答案是肯定的,将三元组乘以d,可以得到新的三元组(da,db,dc) 即(da)^2 + ...

  3. URAL 2032 - Conspiracy Theory and Rebranding【本源勾股数组】

    [题意] 给出三角形的三个边长,均是10^7以内的整数,问三角形的三个角的坐标是否能均是整数,输出其中任意一个解. [题解] 一开始想的是枚举一条边的横坐标,然后通过勾股定理以及算角度求出其他点的坐标 ...

  4. Python练习题 037:Project Euler 009:毕达哥拉斯三元组之乘积

    本题来自 Project Euler 第9题:https://projecteuler.net/problem=9 # Project Euler: Problem 9: Special Pythag ...

  5. POJ 1305 Fermat vs. Pythagoras (毕达哥拉斯三元组)

    设不定方程:x^2+y^2=z^2若正整数三元组(x,y,z)满足上述方程,则称为毕达哥拉斯三元组.若gcd(x,y,z)=1,则称为本原的毕达哥拉斯三元组. 定理:正整数x,y,z构成一个本原的毕达 ...

  6. bzoj 1041: [HAOI2008]圆上的整点 本原勾股數組

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2027  Solved: 853[Submit][Stat ...

  7. FZU1669 Right-angled Triangle【毕达哥拉斯三元组】

    主题链接: pid=1669">http://acm.fzu.edu.cn/problem.php?pid=1669 题目大意: 求满足以a.b为直角边,c为斜边,而且满足a + b ...

  8. hdu 3939(勾股+容斥)

    题意: 给定一个整数L(L<=1e12),计算(x,y,z)组的个数.其中x<y<z,x^2+y^2=z^2,gcd(x,y)==1,gcd(x,z)==1,gcd(y,z)==1. ...

  9. 欧拉计划之题目9:找出唯一的满足a + b + c = 1000的毕达哥拉斯三元组{a, b, c}

    本题来自:http://pe.spiritzhang.com/index.php/2011-05-11-09-44-54/10-9a--b--c--1000a-b-c #include <std ...

随机推荐

  1. selenium 截图

    http://blog.csdn.net/u010953692/article/details/78320025 # coding:utf-8 # coding:cp936 from selenium ...

  2. samba 服务实现在windows共享文件

    1. 什么是samba Samba服务类似于windows上的共享功能,可以实现在Linux上共享文件,windows上访问,当然在Linux上也可以访问到. 是一种在局域网上共享文件和打印机的一种通 ...

  3. ES6里关于正则表达式的拓展

    一.构造函数 在 ES5 中,RegExp构造函数的参数有两种情况. 第一种情况是,参数是字符串,这时第二个参数表示正则表达式的修饰符(flag) var regex = new RegExp('xy ...

  4. jstl的错误总结与解决方法

    哎,真他娘的无语了,jstl标签竟然还与tomcat的版本有关.一会报错:java.lang.AbstractMethodError: javax.servlet.jsp.PageContext.ge ...

  5. Linux取消挂载,删除用户及其目录

    取消挂载 取消挂载命令: umount /dev/sdb 命令umount 文件系统/挂载点 umount /dev/sdb 例如:umount /dev/sdb即可将sdb1取消挂载. 如果出现de ...

  6. sql 查询重复的数据

    select * from yryz_role_partner where user_id in (select user_id from yryz_role_partner group by use ...

  7. 经典的排序算法java实现版

    /** * * @author yuzhiping * @version 1.0 * 功能说明:计算机领域经典的算法 * */ public class sortAlgorithm<T exte ...

  8. shell定期转移日志文件到云盘并定期删除云盘文件

    shell 脚本定期处理如下: cat /home/backup/logs_delete.sh #!/bin/bash /bin/find /data/logs/nginx/ -name " ...

  9. C#中后台线程和UI线程的交互

    在C#中,从Main()方法开始一个默认的线程,一般称之为主线程,如果在这个进行一些非常耗CPU的计算,那么UI界面就会被挂起而处于假死状态,也就是说无法和用户进行交互了,特别是要用类似进度条来实时显 ...

  10. nginx适配移动端

    考虑到网站的在多种设备下的兼容性,有很多网站会有手机版和电脑版两个版本.访问同一个网站URL,当服务端识别出用户使用电脑访问,就打开电脑版的页面,用户如果使用手机访问,则会得到手机版的页面. ngin ...