转载自:http://blog.csdn.net/linuxcumt/article/details/8572746

1.假设随Tumor Size变化,预测病人的肿瘤是恶性(malignant)还是良性(benign)的情况。

给出8个数据如下:

2.假设进行linear regression得到的hypothesis线性方程如上图中粉线所示,则可以确定一个threshold:0.5进行predict

y=1, if h(x)>=0.5

y=0, if  h(x)<0.5

即malignant=0.5的点投影下来,其右边的点预测y=1;左边预测y=0;则能够很好地进行分类。

那么,如果数据集是这样的呢?

这种情况下,假设linear regression预测为蓝线,那么由0.5的boundary得到的线性方程中,不能很好地进行分类(5,6个点均不能满足)。因为不满足

y=1, h(x)>0.5

y=0, h(x)<=0.5

============Hypothesis Representation==================

1.logistic regression model

注意:

========================Decision Boundary =================================

1.logistic regression model的深入解释

2.所谓Decision Boundary就是能够将所有数据点进行很好地分类的h(x)边界。

如下图所示,假设形如h(x)=g(θ0+θ1x1+θ2x2)的hypothesis参数θ=[-3,1,1]T,
则有

predict Y=1, if -3+x1+x2>=0

predict Y=0, if -3+x1+x2<0

刚好能够将图中所示数据集进行很好地分类

3.小问题,注意,所有逻辑回归都这么处理。参见(1.logistic regression model的深入解释)

4.除了线性boundary还有非线性decision boundaries,比如

。训练集的作用

就是找这些参数θ。但这个曲线该怎么找??由此可见,logistic
regression 的

boundary可以是任意的曲线。而所谓的线性可分、不可分实则指的就是

boundary是否为线性或非线性(参数),而不是logistic函数自身。下图中,

进行分类的decision boundary就是一个半径为1的圆,如图所示:

======================Cost Function=====================

1.问题提出,如何求参数θ?但这个曲线该怎么找??

2.对于logistic regression其COST函数不能像线性回归的最小二乘那样

选择。因为其 logistic是非线性函数。非要这样取的话,COST函数是非凸

函数,见下图。无法用梯度下降求极值。

3.logistic
regression其COST函数的定义。在给定了h(θ,x),y后,其COST函数

值即可确定。注意:h(θ,x)为logistic曲线,其取值范围在0-1之间。

4.当h(θ,x)接近1,而y=1,表明分类正确,故不“惩罚”,COST=0;

反之,h(θ,x)接近0,而y=1,,表明分类错误,故大大“惩罚”,COST=无限大;

同理对y=0

5.小题目

===========Simplified
Cost Function and Gradient Descent==============

1.求出最小J(θ)时的θ,然后计算h(θ,x),若其>=0.5(或θTx>=0),则y=1;否则y=0.

参考logistic regression model

2.不管h(x)的表达式是线性的还是logistic
regression model, 都能得到如下的参数更新过程。

写的详细些:

3.归一化(Feature scaling)同样会使得logistic regression 跑的更快。

=============Advanced Optimization ==================

1.除了gradient descent 方法之外,我们还有很多方法可以使用,如下图所示,

左边是另外三种方法,右边是这三种方法共同的优缺点,无需选择学习率α,更快,

但是更复杂。

2.代码小例

3.实际matlab中已经帮我们实现好了一些优化参数θ的方法,那么这里我们需要完成的事情

只是写好cost function,并告诉系统,要用哪个方法进行最优化参数。比如我们用‘GradObj’

, Use the GradObj option to specify that FUN also returns a second output argument

G that is the partial derivatives of the function df/dX, at the point X.

函数costFunction, 定义jVal=J(θ)和对两个θ的gradient:

[plain] view
plain
copy

  1. function [ jVal,gradient ] = costFunction( theta )
  2. %COSTFUNCTION Summary of this function goes here
  3. %   Detailed explanation goes here
  4. jVal= (theta(1)-5)^2+(theta(2)-5)^2;
  5. gradient = zeros(2,1);
  6. %code to compute derivative to theta
  7. gradient(1) = 2 * (theta(1)-5);
  8. gradient(2) = 2 * (theta(2)-5);
  9. end

编写函数Gradient_descent,进行参数优化

[plain] view
plain
copy

  1. function [optTheta,functionVal,exitFlag]=Gradient_descent( )
  2. %GRADIENT_DESCENT Summary of this function goes here
  3. %   Detailed explanation goes here
  4. options = optimset('GradObj','on','MaxIter',100);
  5. initialTheta = zeros(2,1)
  6. [optTheta,functionVal,exitFlag] = fminunc(@costFunction,initialTheta,options);
  7. end

matlab主窗口中调用,得到优化厚的参数(θ1,θ2)=(5,5),即hθ(x)=θ1x1+θ2x2=5*x1+5*x2

[plain] view
plain
copy

  1. [optTheta,functionVal,exitFlag] = Gradient_descent()
  2. initialTheta =
  3. 0
  4. 0
  5. Local minimum found.
  6. Optimization completed because the size of the gradient is less than
  7. the default value of the function tolerance.
  8. <stopping criteria details>
  9. optTheta =
  10. 5
  11. 5
  12. functionVal =
  13. 0
  14. exitFlag =
  15. 1

最后得到的结果显示出优化参数optTheta=[5,5], functionVal = costFunction(迭代后) = 0

===========Multiclass Classification: One-vs-all =================

1.所谓one-vs-all method就是将binary分类的方法应用到多类分类中。

比如我想分成K类,那么就将其中一类作为positive,另(k-1)合起来作为negative,

这样进行K个h(θ)的参数优化,每次得到的一个hθ(x)是指给定θ和x,它属于positive的

类的概率。按照上面这种方法,给定一个输入向量x,获得最大hθ(x)的类就是

x所分到的类。

机器学习-- Logistic回归 Logistic Regression的更多相关文章

  1. 【机器学习实战】第5章 Logistic回归

    第5章 Logistic回归 Logistic 回归 概述 Logistic 回归虽然名字叫回归,但是它是用来做分类的.其主要思想是: 根据现有数据对分类边界线建立回归公式,以此进行分类. 须知概念 ...

  2. Logistic回归(逻辑回归)和softmax回归

    一.Logistic回归 Logistic回归(Logistic Regression,简称LR)是一种常用的处理二类分类问题的模型. 在二类分类问题中,把因变量y可能属于的两个类分别称为负类和正类, ...

  3. Logistic 回归(sigmoid函数,手机的评价,梯度上升,批处理梯度,随机梯度,从疝气病症预测病马的死亡率

    (手机的颜色,大小,用户体验来加权统计总体的值)极大似然估计MLE 1.Logistic回归 Logistic regression (逻辑回归),是一种分类方法,用于二分类问题(即输出只有两种).如 ...

  4. Logistic回归模型和Python实现

    回归分析是研究变量之间定量关系的一种统计学方法,具有广泛的应用. Logistic回归模型 线性回归 先从线性回归模型开始,线性回归是最基本的回归模型,它使用线性函数描述两个变量之间的关系,将连续或离 ...

  5. 《转》Logistic回归 多分类问题的推广算法--Softmax回归

    转自http://ufldl.stanford.edu/wiki/index.php/Softmax%E5%9B%9E%E5%BD%92 简介 在本节中,我们介绍Softmax回归模型,该模型是log ...

  6. 机器学习总结之逻辑回归Logistic Regression

    机器学习总结之逻辑回归Logistic Regression 逻辑回归logistic regression,虽然名字是回归,但是实际上它是处理分类问题的算法.简单的说回归问题和分类问题如下: 回归问 ...

  7. 机器学习入门11 - 逻辑回归 (Logistic Regression)

    原文链接:https://developers.google.com/machine-learning/crash-course/logistic-regression/ 逻辑回归会生成一个介于 0 ...

  8. Coursera公开课笔记: 斯坦福大学机器学习第六课“逻辑回归(Logistic Regression)” 清晰讲解logistic-good!!!!!!

    原文:http://52opencourse.com/125/coursera%E5%85%AC%E5%BC%80%E8%AF%BE%E7%AC%94%E8%AE%B0-%E6%96%AF%E5%9D ...

  9. 机器学习 (三) 逻辑回归 Logistic Regression

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...

随机推荐

  1. input属性总结

    <input type="text" readonly="readonly" /> 这个是不能输入的 readonly="readonly ...

  2. asciinema使用

    asciinema让您轻松记录终端会话,并在终端和网页浏览器中重播它们. 安装最新版本: sapt-get install asciinema 记录你的第一个终端视频: asciinema rec f ...

  3. 面向对象特性 - php

    1.类的字段调用格式 公用字段   类内调用 $this->字段名  类外调用 $对象名->字段名 静态  类内调用 self::$字段名   类外调用 类名::$字段名 常量 类内调用 ...

  4. 实用jquery插件

    jquery toast 一个弹窗插件 jquery.form.min.js 一个Ajax表单插件

  5. 如何导入CSV数据 (python3.6.6区别于python2 环境)

    1.python2环境下 2.python3.6.6环境下 如果用python2环境下的代码,在python3.6.6环境下编译会出现以下问题: 错误(1): SyntaxError:Missing ...

  6. 归并排序算法Java实现

    一. 算法描述 归并排序采用了分治策略(divide-and-conquer),就是将原问题分解为一些规模较小的相似子问题,然后递归解决这些子问题,最后合并其结果作为原问题的解. 归并排序将待排序数组 ...

  7. 课后题2.87&2.86

    课后题2.86&2.87 单纯就是想加点分第十章的题目都被做过了就做下第二章的,正好复习一下前面学的知识,第二章给我剩下的题目也不多了,我就挑了这个题目. 2.86 考虑一个基于IEEE浮点格 ...

  8. perl实现监控linux

    1.使用root用户telnet进入linux系统 2.修改DNS以下两种方法 A.通过setup命令配置dns B.通过在/etc目录下创建resolv.conf文件 3.查看DNS是否配置成功 [ ...

  9. 7,vim

    vim与程序员 所有的 Unix Like 系统都会内建 vi 文书编辑器,其他的文书编辑器则不一定会存在. 但是目前我们使用比较多的是 vim 编辑器. vim 具有程序编辑的能力,可以主动的以字体 ...

  10. objc中的类方法和实例方法有什么本质区别和联系

    类方法: 类方法是属于类对象的 类方法只能通过类对象调用 类方法中的self是类对象 类方法可以调用其他的类方法 类方法中不能访问成员变量 类方法中不能直接调用对象方法 类方法是存储在元类对象的方法缓 ...