【bzoj1070】[SCOI2007]修车 最小费用流
原文地址:http://www.cnblogs.com/GXZlegend/p/6798411.html
题目描述
同一时刻有N位车主带着他们的爱车来到了汽车维修中心。维修中心共有M位技术人员,不同的技术人员对不同的车进行维修所用的时间是不同的。现在需要安排这M位技术人员所维修的车及顺序,使得顾客平均等待的时间最小。 说明:顾客的等待时间是指从他把车送至维修中心到维修完毕所用的时间。
输入
第一行有两个m,n,表示技术人员数与顾客数。 接下来n行,每行m个整数。第i+1行第j个数表示第j位技术人员维修第i辆车需要用的时间T。
输出
最小平均等待时间,答案精确到小数点后2位。
样例输入
2 2
3 2
1 4
样例输出
1.50
题解
拆点+费用流
把m每个工人拆成n*m个,表示修倒数第n辆该修的车的工人m
这样对于工人(i,j),修第t辆车的代价为time[t][j]*i,因为该修的倒数第i辆车只对这相应后面的i辆车有影响。
据此建图,S->工人:(1,0),工人->车:(1,time[t][j]*i),车->T:(1,0),因为每辆车只被修1次,每名工人同一时刻只能修1辆车。
然后跑费用流就行。
注意别把n和m弄反了。
另:数组其实不用开这么大
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
queue<int> q;
int v[70][15] , head[10000] , to[1000000] , val[1000000] , cost[1000000] , next[1000000] , cnt = 1 , s , t , dis[10000] , from[10000] , pre[10000];
void add(int x , int y , int v , int c)
{
to[++cnt] = y , val[cnt] = v , cost[cnt] = c , next[cnt] = head[x] , head[x] = cnt;
to[++cnt] = x , val[cnt] = 0 , cost[cnt] = -c , next[cnt] = head[y] , head[y] = cnt;
}
bool spfa()
{
int x , i;
memset(from , -1 , sizeof(from));
memset(dis , 0x7f , sizeof(dis));
dis[s] = 0 , q.push(s);
while(!q.empty())
{
x = q.front() , q.pop();
for(i = head[x] ; i ; i = next[i])
if(val[i] && dis[to[i]] > dis[x] + cost[i])
dis[to[i]] = dis[x] + cost[i] , from[to[i]] = x , pre[to[i]] = i , q.push(to[i]);
}
return ~from[t];
}
int mincost()
{
int i , k , ans = 0;
while(spfa())
{
k = 0x7f7f7f7f;
for(i = t ; i != s ; i = from[i]) k = min(k , val[pre[i]]);
ans += dis[t] * k;
for(i = t ; i != s ; i = from[i]) val[pre[i]] -= k , val[pre[i] ^ 1] += k;
}
return ans;
}
int main()
{
int n , m , i , j , k;
scanf("%d%d" , &m , &n);
s = 0 , t = n * m + n + 1;
for(i = 1 ; i <= n ; i ++ ) add(i + n * m , t , 1 , 0);
for(i = 1 ; i <= n ; i ++ )
for(j = 1 ; j <= m ; j ++ )
scanf("%d" , &v[i][j]) , add(s , (i - 1) * m + j , 1 , 0);
for(i = 1 ; i <= n ; i ++ )
for(j = 1 ; j <= n ; j ++ )
for(k = 1 ; k <= m ; k ++ )
add((j - 1) * m + k , i + n * m , 1 , v[i][k] * j);
printf("%.2lf\n" , (double)mincost() / n);
return 0;
}
【bzoj1070】[SCOI2007]修车 最小费用流的更多相关文章
- [bzoj1070][SCOI2007]修车_费用流
修车 bzoj-1070 SCOI-2007 题目大意:有m个人要修n台车,每个工人修不同的车的时间不同,问将所有的车都修完,最少需要花费的时间. 注释:$2\le m\le 9$,$1\le n \ ...
- [BZOJ1070][SCOI2007]修车 费用流
1070: [SCOI2007]修车 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 6209 Solved: 2641[Submit][Status] ...
- bzoj1070: [SCOI2007]修车(费用流)
1070: [SCOI2007]修车 题目:传送门 题解: 一道挺简单的费用流吧...胡乱建模走起 贴个代码... #include<cstdio> #include<cstring ...
- BZOJ1070: [SCOI2007]修车(最小费用最大流,思维)
Description 同一时刻有N位车主带着他们的爱车来到了汽车维修中心.维修中心共有M位技术人员,不同的技术人员对不同 的车进行维修所用的时间是不同的.现在需要安排这M位技术人员所维修的车及顺序, ...
- BZOJ1070 [SCOI2007]修车
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...
- [BZOJ1070][SCOI2007]修车(最小费用最大流)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1070 分析: 把每个工人拆成N个点.记为A[i,j]表示第i个工人修倒数第j辆车. 每 ...
- [bzoj1070][SCOI2007]修车——费用流
题目大意: 传送门 题解: 本题和(POJ3686)[http://poj.org/problem?id=3686]一题一模一样,而且还是数据缩小以后的弱化版QAQ,<挑战程序设计竞赛>一 ...
- [BZOJ1070] [SCOI2007] 修车 (费用流 & 动态加边)
Description 同一时刻有N位车主带着他们的爱车来到了汽车维修中心.维修中心共有M位技术人员,不同的技术人员对不同的车进行维修所用的时间是不同的.现在需要安排这M位技术人员所维修的车及顺序,使 ...
- BZOJ1070[SCOI2007]修车——最小费用最大流
题目描述 同一时刻有N位车主带着他们的爱车来到了汽车维修中心.维修中心共有M位技术人员,不同的技术人员对不同的车进行维修所用的时间是不同的.现在需要安排这M位技术人员所维修的车及顺序,使得顾客平均等待 ...
随机推荐
- 【iOS】史上最全的iOS持续集成教程 (下)
:first-child{margin-top:0!important}.markdown-body>:last-child{margin-bottom:0!important}.markdow ...
- 无法打开物理文件 XXX.mdf“,操作系统错误 5:”5(拒绝访问。)"的解决办法
http://blog.csdn.net/blackfield/article/details/6550499 用T-SQL命令附加数据库时,出现如下异常信息: 无法打开物理文件 XXX.mdf&qu ...
- python-无参函数
#!/usr/local/bin/python3 # -*- coding:utf-8 -*- ''' #-----------定义函数---------- def func1(): "te ...
- 爬取多个url页面数据--手动实现
# -*- coding: utf-8 -*- import scrapy from qiubaiByPages.items import QiubaibypagesItem class Qiubai ...
- 各种Nand的总结
1. 微观 NAND闪存NAND是非易失性存储技术,NAND闪存由多个存放以位(bit)为单位的单元构成,这些位通过电荷被打开或关闭,如何组织这些开关单元来储存在SSD上的数据,也决定了NAND闪存的 ...
- POJ 1981 最大点覆盖问题(极角排序)
Circle and Points Time Limit: 5000MS Memory Limit: 30000K Total Submissions: 8346 Accepted: 2974 ...
- 笔记-python-多环境-virtualenv
笔记-python-多环境-virtualenv 1. 多环境 在开发Python应用程序的时候,系统安装的Python3只有一个版本:3.6.4,所有第三方的包都会被pip安装到Pytho ...
- storm实时计算实例(socket实时接入)
介绍 实现了一个简单的从实时日志文件监听,写入socket服务器,再接入Storm计算的一个流程. 源码 日志监听实时写入socket服务器 package socket; import java ...
- Python logging 模块简介
Table of Contents 1. Logging 模块 1.1. 简介 1.2. 简单输出日志 1.3. 输入日志到文件 1.4. 几个基本概念 1.4.1. loggers 1.4.2. h ...
- PHP.13-日历类实现
日历类实现 1.输出星期 calendar.class.php <?php class Calendar{ function out(){//输出表格 echo '<table align ...