1038: [ZJOI2008]瞭望塔

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 2999  Solved: 1227
[Submit][Status][Discuss]

Description

  致力于建设全国示范和谐小村庄的H村村长dadzhi,决定在村中建立一个瞭望塔,以此加强村中的治安。我们
将H村抽象为一维的轮廓。如下图所示 我们可以用一条山的上方轮廓折线(x1, y1), (x2, y2), …. (xn, yn)来描
述H村的形状,这里x1 < x2 < …< xn。瞭望塔可以建造在[x1, xn]间的任意位置, 但必须满足从瞭望塔的顶端可
以看到H村的任意位置。可见在不同的位置建造瞭望塔,所需要建造的高度是不同的。为了节省开支,dadzhi村长
希望建造的塔高度尽可能小。请你写一个程序,帮助dadzhi村长计算塔的最小高度。

Input

  第一行包含一个整数n,表示轮廓折线的节点数目。接下来第一行n个整数, 为x1 ~ xn. 第三行n个整数,为y1
 ~ yn。

Output

  仅包含一个实数,为塔的最小高度,精确到小数点后三位。

Sample Input

【输入样例一】
6
1 2 4 5 6 7
1 2 2 4 2 1
【输入样例二】
4
10 20 49 59
0 10 10 0

Sample Output

【输出样例一】
1.000
【输出样例二】
14.500

HINT

N ≤ 300,输入坐标绝对值不超过106,注意考虑实数误差带来的问题。

Source

[Submit][Status][Discuss]

这题做的真是。。心力交瘁。。其实就是一个半平面交,然而我发现自己实际上完全不会这个东西。

据说模拟退火和三分都可以做,但是考虑将每条边的上半部分求交,最后这个凸包上的点和原折线的这点才可能是答案。

证明应该是分段一次函数的极致只可能出现在端点上。

剩下的就是一系列半平面交模板的问题了,写了一个先将两点式转成点斜式直线方程再求交的函数,WA,发现点斜式根本不能处理与y轴平行的直线。

然后又看了以前模板中的定比分点叉积求交的函数,WA,发现这个只能求线段交点。

https://blog.csdn.net/u013050857/article/details/40923789

最后极不情愿地写了将式子化到底的做法,感觉这个函数根本背不下来。

不过幸好发现了这个问题,否则考场上要是写了就会很惨。

 #include<cmath>
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=l; i<=r; i++)
typedef double db;
using namespace std; const int N=;
const double eps=1e-;
int n,tot,cnt;
db ans=1e60;
struct P{ db x,y; }p[N],a[N];
struct L{ P a,b; db sl; }l[N],q[N],tmp[N]; double dmult(P a,P b,P c){ return (b.x-a.x)*(c.y-a.y)-(c.x-a.x)*(b.y-a.y); }
bool operator <(const L &a,const L &b){ return (a.sl!=b.sl) ? a.sl<b.sl : dmult(a.a,a.b,b.b)<-eps; } P inter(L a,L b){
double A1=a.b.y-a.a.y,B1=a.a.x-a.b.x,C1=-B1*a.a.y-A1*a.a.x;
double A2=b.b.y-b.a.y,B2=b.a.x-b.b.x,C2=-B2*b.a.y-A2*b.a.x;
return (P){(C1*B2-C2*B1)/(B1*A2-B2*A1),(C1*A2-C2*A1)/(A1*B2-A2*B1)};
}
bool jud(L a,L b,L c){ P t=inter(a,b); return dmult(c.a,c.b,t)<-eps; } void work(){
tmp[++tot]=l[];
rep(i,,cnt) if (fabs(l[i].sl-l[i-].sl)>eps) tmp[++tot]=l[i];
rep(i,,tot) l[i]=tmp[i];
int L=,R=; q[++R]=l[]; q[++R]=l[];
rep(i,,tot){
while (L<R && jud(q[R-],q[R],l[i])) R--;
while (L<R && jud(q[L+],q[L],l[i])) L++;
q[++R]=l[i];
}
while (L<R && jud(q[R-],q[R],q[L])) R--;
while (L<R && jud(q[L+],q[L],q[R])) L++;
tot=; rep(i,L,R-) p[++tot]=inter(q[i],q[i+]);
} void getans(){
rep(k,,tot)
rep(i,,n-){
P t=(P){p[k].x,-};
if (p[k].x>=a[i].x && p[k].x<=a[i+].x)
ans=min(ans,p[k].y-inter((L){a[i],a[i+]},(L){t,p[k]}).y);
}
rep(k,,n)
rep(i,,tot-){
P t=(P){a[k].x,-};
if (a[k].x>=p[i].x && a[k].x<=p[i+].x)
ans=min(ans,inter((L){p[i],p[i+]},(L){t,a[k]}).y-a[k].y);
}
} int main(){
scanf("%d",&n);
rep(i,,n) scanf("%lf",&a[i].x);
rep(i,,n) scanf("%lf",&a[i].y);
a[]=(P){a[].x,}; a[n+]=(P){a[n].x,};
rep(i,,n) l[++cnt]=(L){a[i],a[i+],atan2(a[i+].y-a[i].y,a[i+].x-a[i].x)};
sort(l+,l+cnt+); work(); getans(); printf("%.3lf\n",ans);
return ;
}

UPD:感觉自己十分愚蠢,与y轴平行的直线判一下不就好了。

 #include<cmath>
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=l; i<=r; i++)
#define A double k2=(b.b.y-b.a.y)/(b.b.x-b.a.x),b2=b.a.y-k2*b.a.x
#define B double k1=(a.b.y-a.a.y)/(a.b.x-a.a.x),b1=a.a.y-k1*a.a.x
typedef double db;
using namespace std; const int N=;
const double eps=1e-;
int n,tot,cnt;
db ans=1e60;
struct P{ db x,y; }p[N],a[N];
struct L{ P a,b; db sl; }l[N],q[N],tmp[N]; double dmult(P a,P b,P c){ return (b.x-a.x)*(c.y-a.y)-(c.x-a.x)*(b.y-a.y); }
bool operator <(const L &a,const L &b){ return (a.sl!=b.sl) ? a.sl<b.sl : dmult(a.a,a.b,b.b)<-eps; } P inter(L a,L b){
if (a.a.x==a.b.x){ A; return (P){a.a.x,k2*a.a.x+b2}; }
if (b.a.x==b.b.x){ B; return (P){b.a.x,k1*b.a.x+b1}; }
A; B; double x=(b2-b1)/(k1-k2),y=k1*x+b1;
return (P){x,y};
} bool jud(L a,L b,L c){ P t=inter(a,b); return dmult(c.a,c.b,t)<-eps; } void work(){
tmp[++tot]=l[];
rep(i,,cnt) if (fabs(l[i].sl-l[i-].sl)>eps) tmp[++tot]=l[i];
rep(i,,tot) l[i]=tmp[i];
int L=,R=; q[++R]=l[]; q[++R]=l[];
rep(i,,tot){
while (L<R && jud(q[R-],q[R],l[i])) R--;
while (L<R && jud(q[L+],q[L],l[i])) L++;
q[++R]=l[i];
}
while (L<R && jud(q[R-],q[R],q[L])) R--;
while (L<R && jud(q[L+],q[L],q[R])) L++;
tot=; rep(i,L,R-) p[++tot]=inter(q[i],q[i+]);
} void getans(){
rep(k,,tot)
rep(i,,n-){
P t=(P){p[k].x,-};
if (p[k].x>=a[i].x && p[k].x<=a[i+].x)
ans=min(ans,p[k].y-inter((L){a[i],a[i+]},(L){t,p[k]}).y);
}
rep(k,,n)
rep(i,,tot-){
P t=(P){a[k].x,-};
if (a[k].x>=p[i].x && a[k].x<=p[i+].x)
ans=min(ans,inter((L){p[i],p[i+]},(L){t,a[k]}).y-a[k].y);
}
} int main(){
freopen("tower.in","r",stdin);
freopen("tower.out","w",stdout);
scanf("%d",&n);
rep(i,,n) scanf("%lf",&a[i].x);
rep(i,,n) scanf("%lf",&a[i].y);
a[]=(P){a[].x,}; a[n+]=(P){a[n].x,};
rep(i,,n) l[++cnt]=(L){a[i],a[i+],atan2(a[i+].y-a[i].y,a[i+].x-a[i].x)};
sort(l+,l+cnt+); work(); getans(); printf("%.3lf\n",ans);
return ;
}

[BZOJ1038][ZJOI2008]瞭望塔(半平面交)的更多相关文章

  1. bzoj千题计划126:bzoj1038: [ZJOI2008]瞭望塔

    http://www.lydsy.com/JudgeOnline/problem.php?id=1038 本题可以使用三分法 将点按横坐标排好序后 对于任意相邻两个点连成的线段,瞭望塔的高度 是单峰函 ...

  2. 「BZOJ1038」「洛谷P2600」「ZJOI2008」瞭望塔 半平面交+贪心

    题目链接 BZOJ/洛谷 题目描述 致力于建设全国示范和谐小村庄的H村村长dadzhi,决定在村中建立一个瞭望塔,以此加强村中的治安. 我们将H村抽象为一维的轮廓.如下图所示: 我们可以用一条山的上方 ...

  3. bzoj 1038 瞭望塔 半平面交+分段函数

    题目大意 给你一座山,山的形状在二维平面上为折线 给出\((x_1,y_1),(x_2,y_2)...(x_n,y_n)\)表示山的边界点或转折点 现在要在\([x_1,x_n]\)(闭区间)中选择一 ...

  4. [日常摸鱼]bzoj1038 [ZJOI2008]瞭望塔-模拟退火/几何

    题意:给一条平面内$n$个点的折线,要求在折线上搞一个高度$h$的瞭望塔,能够看见折线上所有的点,求$h$的最小值($n \leq 300$) updata2018.1.21 正解半平面交在另一篇里面 ...

  5. bzoj1038: [ZJOI2008]瞭望塔

    Description 致力于建设全国示范和谐小村庄的H村村长dadzhi,决定在村中建立一个瞭望塔,以此加强村中的治安.我们将H村抽象为一维的轮廓.如下图所示 我们可以用一条山的上方轮廓折线(x1, ...

  6. BZOJ-1038 [ZJOI2008]瞭望塔

    先求半平面交,然后建塔的地方肯定是在半平面交的交点上或者是在地面线段的交点上. #include <cstdlib> #include <cstdio> #include &l ...

  7. [日常摸鱼]bzoj1038[ZJOI2008]瞭望塔-半平面交

    这回好好用半平面交写一次- 看了cls当年写的代码看了好久大概看懂了-cls太强辣 #include<cstdio> #include<iostream> #include&l ...

  8. 【半平面交】bzoj1038 [ZJOI2008]瞭望塔

    http://m.blog.csdn.net/blog/qpswwww/44105605 #include<cstdio> #include<cmath> #include&l ...

  9. 【BZOJ1038】[ZJOI2008]瞭望塔 半平面交

    [BZOJ1038][ZJOI2008]瞭望塔 Description 致力于建设全国示范和谐小村庄的H村村长dadzhi,决定在村中建立一个瞭望塔,以此加强村中的治安.我们将H村抽象为一维的轮廓.如 ...

随机推荐

  1. appium-在页面点击一下处理(一般处理提示蒙层)

    在写用例的时候,经常会发现某些第一次进去的页面会有一个蒙层提示.我们只有处理掉这个蒙层,才能继续我们的用例: 这边我们使用的是TouchAction的tap方法 TouchAction action ...

  2. Python全栈工程师(while、占位符)

    ParisGabriel     Python 入门基础         UnicodeASCII 用8个位表示文字 ,最高位一定是零,低七位表示数值Unicode是由16个位组成的(65535) 最 ...

  3. jsp处理

    jsp处理步骤: 浏览器发送一个HTTP请求给服务器. Web服务器识别出这是一个对JSP网页的请求,并且将该请求传递给JSP引擎.通过使用URL或者.jsp文件来完成. JSP引擎从磁盘中载入JSP ...

  4. 后端model传入前端JSP页面中的值判断后再取值

    所遇到的问题后端model传入前端JSP页面中的值通过foreach循环内要满足条件才能取值给Div中,我们知道jsp页面中可以直接用EL表达式取值,格式就是${"model中传来的数据&q ...

  5. 获取JNDI数据源

    1 在容器中配置数据源 Tomcat <?xml version="1.0" encoding="UTF-8"?> <Context> ...

  6. 洛谷 P3349 [ZJOI2016]小星星 解题报告

    P3349 [ZJOI2016]小星星 题目描述 小\(Y\)是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有\(n\)颗小星星,用\(m\)条彩色的细线串了起来,每条细线连着两颗小星星. 有一 ...

  7. Dom的深度优先遍历和广度优先遍历

    //深度优先遍历的递归写法 function DFTraversal(node) { var nodes = []; if (node != null) { nodes.push(node); var ...

  8. 转:CentOS 6.5 nginx

    CentOS 6.5安装及简单配置Nginx 一.准备事项 (1) 因为nginx需要访问80端口所以请先关闭或者开放防火墙端口,和selinux. 参考命令 关闭防火墙: [root@local ~ ...

  9. php格式化时间

    1.Y 年份的四位数 2.m 月份的数字(01-12) 3.d 一个月中的第几天(01-31) 4.w 星期几的数字表示(0-6) 5.H 24小时制(00-23) 6.i 分(00-59) 7.s ...

  10. WCF回调操作

    <?xml version="1.0" encoding="utf-8" ?> <configuration> <system.s ...