BZOJ3771 Triple(FFT+容斥原理)
思路比较直观。设A(x)=Σxai。先把只选一种的统计进去。然后考虑选两种,这个直接A(x)自己卷起来就好了,要去掉选同一种的情况然后除以2。现在得到了选两种的每种权值的方案数,再把这个卷上A(x)。得到这个后考虑去重,其中重复的就是选了两个相同的和另外一个,那么再把选两个相同的生成函数搞出来卷上A,减掉选三个相同的。把这个东西减掉之后再除以3。说了半天也不知道在说啥,总之是容斥原理很基础的应用。
有些卡精度,用long double才过,可能是我写丑了。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 270000
#define double long double
const double PI=3.14159265358979324;
struct complex
{
double x,y;
complex operator +(const complex&a) const
{
return (complex){x+a.x,y+a.y};
}
complex operator -(const complex&a) const
{
return (complex){x-a.x,y-a.y};
}
complex operator *(const complex&a) const
{
return (complex){x*a.x-y*a.y,x*a.y+y*a.x};
}
}w[N],v[N],u[N];
int n,m,t,a[N],r[N];
long long f[N];
void DFT(int n,complex *a,int p)
{
for (int i=;i<n;i++) if (i<r[i]) swap(a[i],a[r[i]]);
for (int i=;i<=n;i<<=)
{
complex wn=(complex){cos(*PI/i),p*sin(*PI/i)};
for (int j=;j<n;j+=i)
{
complex w=(complex){,};
for (int k=j;k<j+(i>>);k++,w=w*wn)
{
complex x=a[k],y=w*a[k+(i>>)];
a[k]=x+y,a[k+(i>>)]=x-y;
}
}
}
}
void mul(int n,complex *a,complex *b)
{
for (int i=;i<n;i++) r[i]=(r[i>>]>>)|(i&)*(n>>);
for (int i=;i<n;i++) a[i].y=a[i].x-b[i].x,a[i].x=a[i].x+b[i].x;
DFT(n,a,);
for (int i=;i<n;i++) a[i]=a[i]*a[i];
DFT(n,a,-);
for (int i=;i<n;i++) a[i].x=a[i].x/n/;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3771.in","r",stdin);
freopen("bzoj3771.out","w",stdout);
const char LL[]="%d %I64d\n";
#else
const char LL[]="%d %lld\n";
#endif
n=read();
for (int i=;i<=n;i++)
{
int x=read();
m=max(m,x);
w[x].x=v[x].x=f[x]=a[x]=;
}
t=;while (t<=(m<<)) t<<=;
mul(t,w,v);
for (int i=;i<=m;i++) if (a[i]) w[i<<].x--;
for (int i=;i<=m*;i++) f[i]+=w[i].x=(int)(w[i].x/+0.5);
for (int i=m*+;i<t;i++) w[i].x=w[i].y=;
for (int i=;i<=m;i++) v[i].x=a[i],v[i].y=;
for (int i=m+;i<t;i++) v[i].x=v[i].y=;
t=;while (t<=m*) t<<=;
mul(t,w,v);
for (int i=;i<t;i++) u[i].x=(i&)?:a[i>>];
for (int i=;i<=m;i++) v[i].x=a[i],v[i].y=;
for (int i=m+;i<t;i++) v[i].x=,v[i].y=;
mul(t,u,v);
for (int i=;i<=m;i++) if (a[i]) u[i*].x--;
for (int i=;i<=m*;i++) f[i]+=(long long)((w[i].x-u[i].x)/+0.5);
for (int i=;i<=m*;i++)
if (f[i]) printf(LL,i,f[i]);
return ;
}
BZOJ3771 Triple(FFT+容斥原理)的更多相关文章
- 【bzoj3771】Triple FFT+容斥原理
题目描述 樵夫的每一把斧头都有一个价值,不同斧头的价值不同.总损失就是丢掉的斧头价值和. 他想对于每个可能的总损失,计算有几种可能的方案. 注意:如果水神拿走了两把斧头a和b,(a,b)和(b,a)视 ...
- [BZOJ 3771] Triple(FFT+容斥原理+生成函数)
[BZOJ 3771] Triple(FFT+生成函数) 题面 给出 n个物品,价值为别为\(w_i\)且各不相同,现在可以取1个.2个或3个,问每种价值和有几种情况? 分析 这种计数问题容易想到生成 ...
- BZOJ 3771 Triple FFT+容斥原理
解析: 这东西其实就是指数型母函数? 所以刚开始读入的值我们都把它前面的系数置为1. 然后其实就是个多项式乘法了. 最大范围显然是读入的值中的最大值乘三,对于本题的话是12W? 用FFT优化的话,达到 ...
- 【BZOJ3771】Triple 生成函数 FFT 容斥原理
题目大意 有\(n\)把斧头,不同斧头的价值都不同且都是\([0,m]\)的整数.你可以选\(1\)~\(3\)把斧头,总价值为这三把斧头的价值之和.请你对于每种可能的总价值,求出有多少种选择方案. ...
- 2018.12.31 bzoj3771: Triple(生成函数+fft+容斥原理)
传送门 生成函数经典题. 题意简述:给出nnn个数,可以从中选1/2/31/2/31/2/3个,问所有可能的和对应的方案数. 思路: 令A(x),B(x),C(x)A(x),B(x),C(x)A(x) ...
- SPOJ Triple Sums(FFT+容斥原理)
# include <cstdio> # include <cstring> # include <cstdlib> # include <iostream& ...
- bzoj3771: Triple(容斥+生成函数+FFT)
传送门 咳咳忘了容斥了-- 设\(A(x)\)为斧头的生成函数,其中第\(x^i\)项的系数为价值为\(i\)的斧头个数,那么\(A(x)+A^2(x)+A^3(x)\)就是答案(于是信心满满的打了一 ...
- bzoj 3771: Triple【生成函数+FFT+容斥原理】
瞎搞居然1A,真是吃鲸 n的范围只有聪明人能看见--建议读题3遍 首先看计数就想到生成函数,列出多项式A(x),然后分别考虑123 对于选一个的直接计数即可: 对于选两个的,\( A(x)^2 \), ...
- 【BZOJ 3771】 3771: Triple (FFT+容斥)
3771: Triple Time Limit: 20 Sec Memory Limit: 64 MBSubmit: 547 Solved: 307 Description 我们讲一个悲伤的故事. ...
随机推荐
- ASP.NET Core读取AppSettings (转载)
今天在把之前一个ASP.NET MVC5的Demo项目重写成ASP.NET Core,发现原先我们一直用的ConfigurationManager.AppSettings[]读取Web.config中 ...
- VB6 变量定义作用域的一个奇特形式
C#或JAVA 下面的i定义是只会限定在if 条件块里的: if (1 == 2) { int i = 000; } else { i = 111;// 错误,未定义. } i = 222;//错误 ...
- BootStrap学习(6)_模态框
一.模态框 模态框(Modal)是覆盖在父窗体上的子窗体.通常,目的是显示来自一个单独的源的内容,可以在不离开父窗体的情况下有一些互动.子窗体可提供信息.交互等. 如果只使用该功能,只引入BootSt ...
- el标签将时间戳转换为特定格式以及将数值保留特定小数
jsp中/el表达式中将后台传来的时间戳格式化为年月日时分秒 1.引入相关标签库 <%@taglib prefix="c" uri="http://java.sun ...
- Quartz.Net分布式任务管理平台(第二版)
前言:在Quartz.Net项目发布第一版后,有挺多园友去下载使用,我们通过QQ去探讨,其中项目中还是存在一定的不完善.所以有了现在这个版本.这个版本的编写完成其实有段时间了一直没有放上去.现在已经同 ...
- CSS 边框(border)实例
CSS 边框(border)实例:元素的边框 (border) 是围绕元素内容和内边距的一条或多条线. CSS border 属性允许你规定元素边框的样式.宽度和颜色. CSS 边框属性属性 描述bo ...
- memcached程序端口监控脚本
线上memcached服务器启动了很多实例,端口很多,需要对这些端口进行监控,并在端口关闭的情况下自启动.监控脚本如下: [root@memcache2 ~]# ps -ef|grep /usr/bi ...
- Charles使用详解
前言: Charles是在 Mac 下常用的网络封包截取工具,在做移动开发时,我们为了调试与服务器端的网络通讯协议,常常需要截取网络封包来分析. 一.主界面介绍 二.网页抓包 启动 Cha ...
- Python 工程管理及 virtualenv 的迁移
virtualenv 是管理 python 工程的利器,它可以很好的帮你维护项目中的依赖,使用 virtualenv,还能保持 global 库的干净.不会被不同项目中的第三方库所污染. virtua ...
- UPC-5063-二分图最大匹配
好吧二分图的最小点覆盖=最大匹配 这道题也就变成模板题了... 写一个提醒,在写二分图时,尽量清零操作清空为-1,比如这个题,匹配数组girl[]如果清空为0,代表每个点都与0点连接,但是实际上是并没 ...