这儿只是一个简单说明/概括/总结。
原理见这:
https://www.cnblogs.com/cjyyb/p/9185093.html
https://www.cnblogs.com/zhoushuyu/p/9187319.html


首先计算\[g(n,j)=\sum_if(i),\quad i是质数\ 或\ i的最小质因子严格大于P_j\\g(n,j)=\begin{cases}g(n,j-1)&P_j^2\gt n\\ g(n,j-1)-f(P_j)\left[g(\frac{n}{P_j},j-1)-\sum_{i=1}^{j-1}f(P_i)\right]&P_j^2\le n\end{cases}\]

类似埃氏筛法,\(P(n,j)\)就是筛\(j\)次后剩下的数的\(f\)和,再加上所有质数\(p\)的\(f(p)\)之和。

\(P_j^2>n\)时,这一次筛不会筛掉任何数,所以就是\(g(n,j-1)\)。

\(P_j^2\leq n\)时,考虑第\(j\)次筛掉了哪些数,也就是最小质因子是\(P_j\)的那些数。因为是积性函数,所以我们直接提出一个\(P_j\)(来保证它含\(P_j\))。
要被筛掉的数在除掉一个\(P_j\)后的最小质因子一定仍大于等于\(P_j\)(否则在之前就被筛掉了),这符合\(g(\frac{n}{P_j},j-1)\)的定义。所以减掉一个\(f(P_j)g(\frac{n}{P_j},j-1)\)。但是\(g(\frac{n}{P_j},j-1)\)还包含所有质数的\(f(p)\)之和,所以再加上\(\sum_{i=1}^{j-1}f(P_i)\)。

那初值呢?先把所有合数的\(f\)的计算方式看做和质数一样,以便对所有数的\(f\)值快速求个和,用它作为\(g(n,0)\)(注意这里不考虑\(1\))。这样虽然合数的\(f\)值是假的,但是\(g(n,|P|)\)还是能正确的表示所有质数\(p\)的\(f(p)\)之和。


现在考虑算上合数的\(f\)值求和。令\[S(n,j)=\sum_if(i),\quad i是质数\ 或\ i的最小质因子大于等于P_j\]

我们把\(S(n,j)\)分两部分计算,一是所有质数的贡献,二是所有合数的贡献。对于\(f(1)\)最后单独算下。

那么所有质数的贡献可以用\(g\)表示,也就是\(g(n,j)-\sum_{i=1}^{j-1}f(P_i)\)(因为最小质因子要大于等于\(P_j\),所以把那些减掉)。

对于合数,枚举这个合数的最小质因子及其次数,用\(f\)是积性函数的性质直接算:\[S(n,j)=g(n,j)-\sum_{i=1}^{j-1}f(P_i)+\sum_{k=j}^{P_k^2\leq n}\sum_{e=1}^{P_k^{e+1}\leq n}\left[f(P_k^e)\times S(\frac{n}{P_k^e},k+1)+f(P_k^{e+1})\right]\]

\(f(P_k^{e+1})\)是\(S\)没有考虑的那部分(就是\(P_k^{e+1}\),质数的若干次幂这样的合数,而\(S(..,k+1)\)就把这些数忽略掉了)。

答案就是\(S(n,1)+f(1)\)。


流程:

  1. 把所有合数看做质数,求一遍和,得到初值\(g(n,0)\)。同时预处理一个\(f(P_i)\)的前缀和。

  2. 用\[g(n,j)=\begin{cases}g(n,j-1)&P_j^2\gt n\\ g(n,j-1)-f(P_j)\left[g(\frac{n}{P_j},j-1)-\sum_{i=1}^{j-1}f(P_i)\right]&P_j^2\le n\end{cases}\]
    计算\(g(x,|P|)\)(把第二维滚动掉)。

  3. 用\[S(n,j)=g(n,j)-\sum_{i=1}^{j-1}f(P_i)+\sum_{k=j}^{P_k^2\leq n}\sum_{e=1}^{P_k^{e+1}\leq n}\left[f(P_k^e)\times S(\frac{n}{P_k^e},k+1)+f(P_k^{e+1})\right]\]
    计算\(S(n,1)+f(1)\)。

计算\(S,g\)的复杂度都是\(O(\frac{n^{\frac34}}{\log n})\)。

对于其它积性函数,同\(g\)一样计算。

实现上,筛\(sqrt(n)\)内的质数这一步往往可以省略,见这里


例题:
LOJ6235 区间素数个数
BZOJ3944 Sum
LOJ6053 简单的函数

以后要做的题:
https://cmxrynp.github.io/2018/12/03/Min-25筛学习笔记/
https://blog.csdn.net/koishi_514/article/details/79485534
https://blog.csdn.net/HOWARLI/article/details/80339931

Min_25筛 学习笔记的更多相关文章

  1. Min_25 筛 学习笔记

    原文链接https://www.cnblogs.com/zhouzhendong/p/Min-25.html 前置技能 埃氏筛法 整除分块(这里有提到) 本文概要 1. 问题模型 2. Min_25 ...

  2. min_25筛学习笔记【待填坑】

    看见ntf和pb两位大佬都来学了,然后就不自觉的来学了. 我们考虑这样一个问题. $$ans=\sum_{i=1}^nf(i)$$其中$1\leq n\leq 10^{10}$ 其中$f(i)$是一个 ...

  3. 洲阁筛 & min_25筛学习笔记

    洲阁筛 给定一个积性函数$F(n)$,求$\sum_{i = 1}^{n}F(n)$.并且$F(n)$满足在素数和素数次幂的时候易于计算. 显然有: $\sum_{i = 1}^{n} F(n) = ...

  4. Min_25筛学习笔记

    感觉好好用啊 Luogu上的杜教筛模版题一发 Min_25抢到了 rank1 $ Updated \ on 11.29 $被 STO txc ORZ踩爆啦 前言 $ Min$_$25$筛可以求积性函数 ...

  5. $Min\_25$筛学习笔记

    \(Min\_25\)筛学习笔记 这种神仙东西不写点东西一下就忘了QAQ 资料和代码出处 资料2 资料3 打死我也不承认参考了yyb的 \(Min\_25\)筛可以干嘛?下文中未特殊说明\(P\)均指 ...

  6. Powerful Number 筛学习笔记

    Powerful Number 筛学习笔记 用途 \(Powerful\ number\) 筛可以用来求出一类积性函数的前缀和,最快可以达到根号复杂度. 实现 \(Powerful\ number\) ...

  7. Min_25筛 学习小记

    前言 为什么叫学习小记呢?因为暂时除了模板题就没有做其他的东西了.(雾 这个东西折磨了我一整天,看得我身不如死,只好结合代码理解题解,差点死在机房.(话说半天综合半天竞赛真是害人不浅) 为了以后忘了再 ...

  8. min-25筛学习笔记

    Min_25筛简介 \(\text{min_25}\)筛是一种处理一类积性函数前缀和的算法. 其中这类函数\(f(x)\)要满足\(\sum_{i=1}^{n}[i\in prime]\cdot f( ...

  9. min_25 筛学习小记

    min_25筛 由 dalao min_25 发明的筛子,据说时间复杂度是极其优秀的 \(O(\frac {n^{\frac 3 4}} {\log n})\),常数还小. 1. 质数 \(k\) 次 ...

随机推荐

  1. cf1110d 线性dp

    很精练的一道题 /* dp[i][j][k]表示值i作为最大值结束的边剩k条,i-1剩下j条的情况的结果 dp[i][k][l]是由dp[i-1][j][k]的j决定的,因为k+l是被留下给后面用的, ...

  2. c++ 链表基础功能实现

    #include<stack> struct ListNode { int m_nValue; ListNode* m_pNext; }; ListNode* CreateListNode ...

  3. JAVA追加写入文本文件

    public void method1() { FileWriter fw = null; try { //如果文件存在,则追加内容:如果文件不存在,则创建文件 File f=new File(&qu ...

  4. Redis设置内存最大占用值

    Redis设置内存最大占用值: Redis设置占用物理机最大的内存 #占用最大20G maxmemory 20480mb Redis设置内存装不下了,有限删除即将过期的 当前已用内存超过maxmemo ...

  5. Git和Github入门教程

    一.常用命令 所有命令前都要加 git,如表中的init是指 git init.点击命令可直接跳转至本文第一次使用的地方.以下命令都在命令行里执行. 1.本地命令 行为 命令 备注 初始化 init ...

  6. Eclipse+Maven整合开发Java项目(二)➣webapp3.0以上的Maven项目

    概述 Eclipse集成Maven插件,新建maven-archetype-webapp项目的时候,采用的webapp的版本较低,默认是2.3,有些时候,我们希望升级Webapp的版本到3.0(Tom ...

  7. bzoj2018年5月赛

    题解: 老早之前看的并没有写题解.. t1: 我刚开始想的是线段树来维护.. 看了题解发现直接二分就行了 很容易发现因数只会有30个 那么我们就统计每一种因数在这段区间的个数 然后开个vector记录 ...

  8. JS如何监听动画结束

    场景描述 在使用JS控制动画时一般需要在动画结束后执行回调去进行DOM的相关操作,所以需要监听动画结束进行回调.JS提供了以下事件用于监听动画的结束,简单总结学习下. CSS3动画监听事件 trans ...

  9. 一起学Hadoop——使用自定义Partition实现hadoop部分排序

    排序在很多业务场景都要用到,今天本文介绍如何借助于自定义Partition类实现hadoop部分排序.本文还是使用java和python实现排序代码. 1.部分排序. 部分排序就是在每个文件中都是有序 ...

  10. python编码,赋值和is的区别

    1. == 与 is 的区别 赋值 == 比较值是否相等,is 比较,比较的是内存地址. 小数据池的作用是节省内存空间 数字的范围:-5 到 256 共用一个数据池 字符串范围:1.不能有特殊字符.2 ...