分享一些公式计算张量(图像)的尺寸,以及卷积神经网络(CNN)中层参数的计算。

以AlexNet网络为例,以下是该网络的参数结构图。

AlexNet网络的层结构如下:

1.Input:       图像的尺寸是227*227*3.

2.Conv-1:    第1层卷积层的核大小11*11,96个核。步长(stride)为4,边缘填充(padding)为0。

3.MaxPool-1:     池化层-1对Conv-1进行池化,尺寸为3*3,步长为2.

4.Conv-2:    核尺寸:5*5,数量:256,步长:1,填充:2

5.MaxPool-2:     尺寸:3*3,步长:2

6.Conv-3: 核尺寸:3*3,数量:384,步长:1,填充:1

7: Conv-4:   结构同Conv-3.

8. Conv-5:   核尺寸:3*3,数量:256,步长:1,填充:1

9. MaxPool-3: 尺寸:3*3,步长:2

10.FC-1:       全连接层1共有4096个神经元。

11.FC-1:       全连接层2共有4096个神经元。

12.FC-3:       全连接层3共有1000个神经元。

接下来,我们对以上的网络结构进行描述:

1.如何计算张量(图像)的尺寸;

2.如何计算网络的总参数;

卷积层(Conv Layer)的输出张量(图像)的大小

定义如下:

O=输出图像的尺寸。

I=输入图像的尺寸。

K=卷积层的核尺寸

N=核数量

S=移动步长

P =填充数

输出图像尺寸的计算公式如下:

输出图像的通道数等于核数量N。

示例:AlexNet中输入图像的尺寸为227*227*3.第一个卷积层有96个尺寸为11*11*3的核。步长为4,填充为0.

输出的图像为55*55*96(每个核对应1个通道)。

池化层(MaxPool Layer)的输出张量(图像)的大小

定义如下:

O=输出图像的尺寸。
I=输入图像的尺寸。
S=移动步长
PS=池化层尺寸

输出图像尺寸的计算公式如下:

不同于卷积层,池化层的输出通道数不改变。

示例:每1层卷积层后的池化层的池化层尺寸为3*3,步长为2。根据前面卷积层的输出为55*55*96。池化层的输出图像尺寸如下:

输出尺寸为27*27*96。

全连接层(Fully
Connected Layer)的输出张量(图像)的大小

全连接层输出向量长度等于神经元的数量。

通过AlexNet改变张量(图像)的尺寸的结构如下:

在AlexNet网络中,输出的图像尺寸为227*227*3.

Conv-1,尺寸变为55*55*96,池化层后变为27*27*96。

Conv-2,尺寸变为27*27*256,池化层后变为13*13*256.

Conv-3,尺寸变为13*13*384,经过Conv-4和Conv-5变回13*13*256.

最后,MaxPool-3尺寸缩小至6*6*256.

图像通过FC-1转换为向量4096*1.通过FC-2尺寸未改变.最终,通过FC-3输出1000*1的尺寸张量.

接下来,计算每层的参数数量.

Conv Layer参数数量

在CNN中,每层有两种类型的参数:weights
和biases.总参数数量为所有weights和biases的总和.

定义如下:

WC=卷积层的weights数量

BC=卷积层的biases数量

PC=所有参数的数量

K=核尺寸

N=核数量

C =输入图像通道数

卷积层中,核的深度等于输入图像的通道数.于是每个核有K*K个参数.并且有N个核.由此得出以下的公式.

示例:AlexNet网络中,第1个卷积层,输入图像的通道数(C)是3,核尺寸(K)是11*11,核数量是96. 该层的参数计算如下:

计算出Conv-2, Conv-3,
Conv-4, Conv-5 的参数分别为 614656 , 885120, 1327488 和884992.卷积层的总参数就达到3,747,200.

MaxPool Layer参数数量

没有与MaxPool layer相关的参数量.尺寸,步长和填充数都是超参数.

Fully Connected (FC) Layer参数数量

在CNN中有两种类型的全连接层.第1种是连接到最后1个卷积层,另外1种的FC层是连接到其他的FC层.两种情况我们分开讨论.

类型1:连接到Conv Layer

定义如下:

Wcf= weights的数量

Bcf= biases的数量
O= 前卷积层的输出图像的尺寸

N = 前卷积层的核数量

F = 全连接层的神经元数量

示例: AlexNet网络中第1个FC层连接至Conv Layer.该层的O为6,N为256,F为4096.

参数数目远大于所有Conv Layer的参数和.

类型2:连接到FC Layer

定义如下:

Wff= weights的数量

Bff= biases的数量

Pff= 总参数的数量

F= 当前FC层的神经元数量

F-1 = 前FC层的神经元数量

示例:AlexNet的最后1个全连接层,   F-1=4096,F=1000 .

AlexNet网络中张量(图像)尺寸和参数数量

AlexNet网络中总共有5个卷积层和3个全连接层.总共有62,378,344个参数.以下是汇总表.

Layer Name

Tensor Size

Weights

Biases

Parameters

Input Image

227x227x3

0

0

0

Conv-1

55x55x96

34,848

96

34,944

MaxPool-1

27x27x96

0

0

0

Conv-2

27x27x256

614,400

256

614,656

MaxPool-2

13x13x256

0

0

0

Conv-3

13x13x384

884,736

384

885,120

Conv-4

13x13x384

1,327,104

384

1,327,488

Conv-5

13x13x256

884,736

256

884,992

MaxPool-3

6x6x256

0

0

0

FC-1

4096×1

37,748,736

4,096

37,752,832

FC-2

4096×1

16,777,216

4,096

16,781,312

FC-3

1000×1

4,096,000

1,000

4,097,000

Output

1000×1

0

0

0

Total

     

62,378,344

卷积神经网络(CNN)张量(图像)的尺寸和参数计算(深度学习)的更多相关文章

  1. 卷积神经网络CNN原理以及TensorFlow实现

    在知乎上看到一段介绍卷积神经网络的文章,感觉讲的特别直观明了,我整理了一下.首先介绍原理部分. [透析] 卷积神经网络CNN究竟是怎样一步一步工作的? 通过一个图像分类问题介绍卷积神经网络是如何工作的 ...

  2. python机器学习卷积神经网络(CNN)

    卷积神经网络(CNN) 关注公众号"轻松学编程"了解更多. 一.简介 ​ 卷积神经网络(Convolutional Neural Network,CNN)是一种前馈神经网络,它的人 ...

  3. 【深度学习系列】手写数字识别卷积神经--卷积神经网络CNN原理详解(一)

    上篇文章我们给出了用paddlepaddle来做手写数字识别的示例,并对网络结构进行到了调整,提高了识别的精度.有的同学表示不是很理解原理,为什么传统的机器学习算法,简单的神经网络(如多层感知机)都可 ...

  4. 深度学习之卷积神经网络(CNN)详解与代码实现(一)

    卷积神经网络(CNN)详解与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10430073.html 目 ...

  5. 【深度学习系列】卷积神经网络CNN原理详解(一)——基本原理

    上篇文章我们给出了用paddlepaddle来做手写数字识别的示例,并对网络结构进行到了调整,提高了识别的精度.有的同学表示不是很理解原理,为什么传统的机器学习算法,简单的神经网络(如多层感知机)都可 ...

  6. 卷积神经网络CNN学习笔记

    CNN的基本结构包括两层: 特征提取层:每个神经元的输入与前一层的局部接受域相连,并提取该局部的特征.一旦该局部特征被提取后,它与其它特征间的位置关系也随之确定下来: 特征映射层:网络的每个计算层由多 ...

  7. 卷积神经网络(CNN,ConvNet)

    卷积神经网络(CNN,ConvNet) 卷积神经网络(CNN,有时被称为 ConvNet)是很吸引人的.在短时间内,变成了一种颠覆性的技术,打破了从文本.视频到语音等多个领域所有最先进的算法,远远超出 ...

  8. TensorFlow 2.0 深度学习实战 —— 浅谈卷积神经网络 CNN

    前言 上一章为大家介绍过深度学习的基础和多层感知机 MLP 的应用,本章开始将深入讲解卷积神经网络的实用场景.卷积神经网络 CNN(Convolutional Neural Networks,Conv ...

  9. 卷积神经网络(CNN)前向传播算法

    在卷积神经网络(CNN)模型结构中,我们对CNN的模型结构做了总结,这里我们就在CNN的模型基础上,看看CNN的前向传播算法是什么样子的.重点会和传统的DNN比较讨论. 1. 回顾CNN的结构 在上一 ...

随机推荐

  1. java中的Iterator和ListIterator的区别

    (一)iterator迭代器 Collection的iterator方法返回一个实现了一个Iterator接口的对象 Iterator接口中包含三个方法: 1)E next() 2)boolean h ...

  2. 在Scrapy中使用selenium

    在scrapy中使用selenium 在scrapy中需要获取动态加载的数据的时候,可以在下载中间件中使用selenium 编码步骤: 在爬虫文件中导入webdrvier类 在爬虫文件的爬虫类的构造方 ...

  3. 【转】使用Mybatis时遇到的延迟加载造成返回异常的问题——HttpMessageConversionException: Type definition error

    在使用Mybatis的过程中,使用了resultMap延迟加载. 延迟加载:association联表查询的过程中,查询另外两个表的对象.而延迟加载是指只有在使用这两个对象的时候才会进行查询. 问题的 ...

  4. 【坑】https证书链不完整的坑

    支付宝支付回调https失败,微信分享https连接在微信里打开空白,而chrome等浏览器访问正常. 是的,以上问题我作为半个运维在项目中遇到了,就是由于https证书链不完整引起的. 好吧,其实压 ...

  5. C++常见的概念

    1)多态:允许将子类类型的指针赋值给父类类型的指针.赋值以后,父类对象可以根据当前赋值给它的子类对象的特性以不同的方式运作. 2)深拷贝:重新分配内存:浅拷贝:共用同一内存. 3)友元:非成员函数不能 ...

  6. .net调用系统软键盘(兼容win7及win10)

    没有什么技术说明,也是查询出来的,在此做记录 public class StartKeyBoard    {        public static bool isShowNumBoard = fa ...

  7. python函数之第一类对象

    目录 python函数之第一类对象 python函数之第一类对象 第一类对象(英语:First-class object)在计算机科学中指可以在执行期创造并作为参数传递给其他函数或存入一个变数的实体. ...

  8. js中常用的内置对象

    Arguments 函数参数集合 arguments[ ] 函数参数的数组 Arguments 一个函数的参数和其他属性 Arguments.callee 当前正在运行的函数     Argument ...

  9. 加载XML文件到系统中

    using System;using System.Data;using System.IO;using System.Xml;using System.Collections.Generic; na ...

  10. powershell中设置变量并启动Tomcat

    假设tomcat安装在 C:\GreenSoftware\apache-tomcat-9.0.14 目录. 使用powershell进入到此目录.执行命令 $Env:JAVA_HOME="C ...