import numpy as np
from matplotlib import pyplot as plt A = np.array([[5],[4]])
C = np.array([[4],[6]])
B = A.T.dot(C)
AA = np.linalg.inv(A.T.dot(A))
l=AA.dot(B)
P=A.dot(l)
x=np.linspace(-2,2,10)
x.shape=(1,10)
xx=A.dot(x)
fig = plt.figure()
ax= fig.add_subplot(111)
ax.plot(xx[0,:],xx[1,:])
ax.plot(A[0],A[1],'ko') ax.plot([C[0],P[0]],[C[1],P[1]],'r-o')
ax.plot([0,C[0]],[0,C[1]],'m-o') ax.axvline(x=0,color='black')
ax.axhline(y=0,color='black') margin=0.1
ax.text(A[0]+margin, A[1]+margin, r"A",fontsize=20)
ax.text(C[0]+margin, C[1]+margin, r"C",fontsize=20)
ax.text(P[0]+margin, P[1]+margin, r"P",fontsize=20)
ax.text(0+margin,0+margin,r"O",fontsize=20)
ax.text(0+margin,4+margin, r"y",fontsize=20)
ax.text(4+margin,0+margin, r"x",fontsize=20)
plt.xticks(np.arange(-2,3))
plt.yticks(np.arange(-2,3)) ax.axis('equal')
plt.show()

x = [(2, 0, 3), (1, 0, 3), (1, 1, 3), (1,4, 2), (1, 2, 4)]
y = [5, 6, 8, 10, 11] alpha = 0.02
diff = [0, 0]
error0 = 0
error1 = 0
w0 = 0
w1 = 0
w2 = 0 cnt = 0
while True:
cnt += 1
for i in range(len(x)):
diff[0] = (w0 * x[i][0] + w1 * x[i][1] + w2 * x[i][2]) - y[i]
w0 -= alpha * diff[0] * x[i][0]
w1 -= alpha * diff[0] * x[i][1]
w2 -= alpha * diff[0] * x[i][2]
error1 = 0
for lp in range(len(x)):
error1 += (y[lp] - (w0 + w1 * x[lp][1] + w2 * x[lp][2])) ** 2 / 2
if abs(error1 - error0) < 0.002:
break
else:
error0 = error1 print('theta0 : %f, theta1 : %f, theta2 : %f, error1 : %f' % (w0, w1, w2, error1))
print('Done: theta0 : %f, theta1 : %f, theta2 : %f' % (w0, w1, w2))
print('迭代次数: %d' % cnt)

import math
import random
import numpy as np def rand(a, b):
return (b - a) * random.random() + a def make_matrix(m,n,fill=0.0):
mat = []
for i in range(m):
mat.append([fill] * n)
return mat def sigmoid(x):
return 1.0 / (1.0 + math.exp(-x)) def sigmod_derivate(x):
return x * (1 - x) class BPNeuralNetwork: def __init__(self):
self.input_n = 0
self.hidden_n = 0
self.output_n = 0
self.input_cells = []
self.hidden_cells = []
self.output_cells = []
self.input_weights = []
self.output_weights = [] def setup(self,ni,nh,no):
self.input_n = ni + 1
self.hidden_n = nh
self.output_n = no self.input_cells = [1.0] * self.input_n
self.hidden_cells = [1.0] * self.hidden_n
self.output_cells = [1.0] * self.output_n self.input_weights = make_matrix(self.input_n,self.hidden_n)
self.output_weights = make_matrix(self.hidden_n,self.output_n) # random activate
for i in range(self.input_n):
for h in range(self.hidden_n):
self.input_weights[i][h] = rand(-0.2, 0.2)
for h in range(self.hidden_n):
for o in range(self.output_n):
self.output_weights[h][o] = rand(-2.0, 2.0) def predict(self,inputs):
for i in range(self.input_n - 1):
self.input_cells[i] = inputs[i] for j in range(self.hidden_n):
total = 0.0
for i in range(self.input_n):
total += self.input_cells[i] * self.input_weights[i][j]
self.hidden_cells[j] = sigmoid(total) for k in range(self.output_n):
total = 0.0
for j in range(self.hidden_n):
total += self.hidden_cells[j] * self.output_weights[j][k]
self.output_cells[k] = sigmoid(total) return self.output_cells[:] def back_propagate(self,case,label,learn): self.predict(case)
#计算输出层的误差
output_deltas = [0.0] * self.output_n
for k in range(self.output_n):
error = label[k] - self.output_cells[k]
output_deltas[k] = sigmod_derivate(self.output_cells[k]) * error #计算隐藏层的误差
hidden_deltas = [0.0] * self.hidden_n
for j in range(self.hidden_n):
error = 0.0
for k in range(self.output_n):
error += output_deltas[k] * self.output_weights[j][k]
hidden_deltas[j] = sigmod_derivate(self.hidden_cells[j]) * error #更新输出层权重
for j in range(self.hidden_n):
for k in range(self.output_n):
self.output_weights[j][k] += learn * output_deltas[k] * self.hidden_cells[j] #更新隐藏层权重
for i in range(self.input_n):
for j in range(self.hidden_n):
self.input_weights[i][j] += learn * hidden_deltas[j] * self.input_cells[i] error = 0
for o in range(len(label)):
error += 0.5 * (label[o] - self.output_cells[o]) ** 2 return error def train(self,cases,labels,limit = 100,learn = 0.05):
for i in range(limit):
error = 0
for i in range(len(cases)):
label = labels[i]
case = cases[i]
error += self.back_propagate(case, label, learn)
pass def test(self):
cases = [
[0, 0],
[0, 1],
[1, 0],
[1, 1],
]
labels = [[0], [1], [1], [0]]
self.setup(2, 5, 1)
self.train(cases, labels, 100000, 0.001)
for case in cases:
print(self.predict(case)) if __name__ == '__main__':
nn = BPNeuralNetwork()
nn.test()

吴裕雄 python深度学习与实践(11)的更多相关文章

  1. 吴裕雄 python深度学习与实践(16)

    import struct import numpy as np import matplotlib.pyplot as plt dateMat = np.ones((7,7)) kernel = n ...

  2. 吴裕雄 python深度学习与实践(7)

    import cv2 import numpy as np img = np.mat(np.zeros((,))) cv2.imshow("test",img) cv2.waitK ...

  3. 吴裕雄 python深度学习与实践(18)

    # coding: utf-8 import time import numpy as np import tensorflow as tf import _pickle as pickle impo ...

  4. 吴裕雄 python深度学习与实践(17)

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import time # 声明输 ...

  5. 吴裕雄 python深度学习与实践(15)

    import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data mnist = ...

  6. 吴裕雄 python深度学习与实践(14)

    import numpy as np import tensorflow as tf import matplotlib.pyplot as plt threshold = 1.0e-2 x1_dat ...

  7. 吴裕雄 python深度学习与实践(13)

    import numpy as np import matplotlib.pyplot as plt x_data = np.random.randn(10) print(x_data) y_data ...

  8. 吴裕雄 python深度学习与实践(12)

    import tensorflow as tf q = tf.FIFOQueue(,"float32") counter = tf.Variable(0.0) add_op = t ...

  9. 吴裕雄 python深度学习与实践(10)

    import tensorflow as tf input1 = tf.constant(1) print(input1) input2 = tf.Variable(2,tf.int32) print ...

随机推荐

  1. 使用Ajax+jQuery来实现前端收到的数据在console上显示+简单的主页设计与bootstrap插件实现图片轮播

    1.实现前端输入的数据在console上显示 上一篇是解决了在前端的输入信息在cygwin上显示,这次要给前台们能看见的数据,因为数据库里插入的数据少,所以写的语句翻来覆去就那几个词,emmm···当 ...

  2. AFN\HTTPS\UIWebView

    1.AFN使用技巧 1.在开发的时候可以创建一个工具类,继承自我们的AFN中的请求管理者,再控制器中真正发请求的代码使用自己封装的工具类. 2.这样做的优点是以后如果修改了底层依赖的框架,那么我们修改 ...

  3. WEBBASE篇: 第六篇, CSS知识4

    CSS 1.框模型 1.内边距 属性: padding:value; padding-top / right / bottom / left:value; 2.box-sizing 作用:指定框模型的 ...

  4. IDEA 类图功能使用方法

    1. Ctrl+Shift+Alt+U显示类图,(可以选中代码中类,再按快捷键,直接进入此类的类图) 2. 在类图中,选中某类右击显示Show Implementations,弹出子类的选择框. 按S ...

  5. python: 递归函数(科赫雪花)

    import turtle as t def kehe(size,n): #递归函数 if n==0: t.fd(size) #阶数为0时,为一直线 else: for i in [0,60,-120 ...

  6. 2.python发展历程

    创始人:吉多·范罗苏姆于1989年圣诞节在阿姆斯特丹编写 python分为: python 2.X python 3.X 使用python的公司: 豆瓣.BT.Dropbox.YouTube.Quor ...

  7. php 多线程

    windows下安装php真正的多线程扩展pthreads教程 http://www.thinkphp.cn/topic/22676.html PHP 安装 Pthreads (解决 class Th ...

  8. vim 简单实用

    http://www.runoob.com/linux/linux-vim.html 编辑模式 : (同时打开两个文件) vim test.c test1.c -O     同时编辑两个文件    - ...

  9. C# 调用打印机 打印 Excel

    打印 Excel 模板 大体思路,通过NPOI操作Excel文件,通过Spire将Excel转成图片,将图片传给系统打印. Spire是收费工具,在微软库中下载Free版本. #region 打印所用 ...

  10. 防爆等级介绍 - IP65防爆等级和dIIBT4防爆等级的有什么区别?

    IP65 IP是Ingress Protection的缩写,IP等级是针对电气设备外壳对异物侵入的防护等级,如:防爆电器,防水防尘电器,来源是国际电工委员会的标准IEC 60529,这个标准在2004 ...