【强化学习】python 实现 saras 例一
本文作者:hhh5460
本文地址:https://www.cnblogs.com/hhh5460/p/10146554.html
说明:将之前 q-learning 实现的例一,用 saras 重新写了一遍。具体问题这里就不多说了。
0. q-learning 与 saras 伪代码的对比
图片来源:https://morvanzhou.github.io/tutorials/machine-learning/reinforcement-learning/3-1-A-sarsa/(莫凡)
1. q-learning 与 saras 真实代码对比
a). q-learning 算法
# 探索学习13次
for i in range(13):
# 0.从最左边的位置开始(不是必要的)
current_state = 0
# 1.进入循环,开始探索学习
while current_state != states[-1]:
# 2.取当前状态下的合法动作中,随机(或贪婪)地选一个作为 当前动作
if random.uniform(0,1) > epsilon: # 探索
current_action = random.choice(get_valid_actions(current_state))
else:
#current_action = q_table.ix[current_state].idxmax() # 这种写法是有问题的!二维迷宫有机会陷入死锁
s = q_table.ix[current_state].filter(items=get_valid_actions(current_state))
current_action = random.choice(s[s==s.max()].index) # 可能多个最大值,当然,一个更好
#3.执行当前动作,得到下一个状态(位置)
next_state = get_next_state(current_state, current_action)
# 4.下个状态的奖励
next_state_reward = rewards[next_state]
# 5.取下一个状态所有的Q value,待取其最大值
next_state_q_values = q_table.ix[next_state, get_valid_actions(next_state)]
# 6.根据贝尔曼方程,更新 Q table 中当前状态-动作对应的 Q value,有max!
q_table.ix[current_state, current_action] += alpha * (rewards[next_state] + gamma * next_state_q_values.max() - q_table.ix[current_state, current_action])
# 7.进入下一个状态(位置)
current_state = next_state
b). saras 算法
# 探索学习13次
for i in range(13):
# 0.从最左边的位置开始(不是必要的)
current_state = 0
# 1.取当前状态下的一个合法动作
if random.uniform(0,1) > epsilon: # 探索
current_action = random.choice(get_valid_actions(current_state))
else: # 利用(贪婪)
s = q_table.ix[current_state].filter(items=get_valid_actions(current_state))
current_action = random.choice(s[s==s.max()].index) # 可能多个最大值,当然,一个更好
# 2.进入循环,开始探索学习
while current_state != states[-1]:
# 3.执行当前动作,得到下一个状态(位置)
next_state = get_next_state(current_state, current_action)
# 4.取下个状态下的一个合法动作
if random.uniform(0,1) > epsilon: # 探索
next_action = random.choice(get_valid_actions(next_state))
else: # 利用(贪婪)
s = q_table.ix[next_state].filter(items=get_valid_actions(next_state))
next_action = random.choice(s[s==s.max()].index) # 可能多个最大值,当然,一个更好
# 5.下个状态的奖励
next_state_reward = rewards[next_state]
# 6.取下个状态,下个动作对应的一个Q value
next_q_value = q_table.ix[next_state, next_action]
# 7.更新 Q table 中当前状态-动作对应的 Q value,无max!
q_table.ix[current_state, current_action] += alpha * (next_state_reward + gamma * next_q_value - q_table.ix[current_state, current_action])
# 8.进入下一状态、下一动作
current_state, current_action = next_state, next_action
2. 完整代码
'''
-o---T
# T 就是宝藏的位置, o 是探索者的位置
'''
# 作者: hhh5460
# 时间:20181219 import pandas as pd
import random
import time epsilon = 0.9 # 贪婪度 greedy
alpha = 0.1 # 学习率
gamma = 0.8 # 奖励递减值 states = range(6) # 状态集。从0到5
actions = ['left', 'right'] # 动作集。也可添加动作'none',表示停留
rewards = [0,0,0,0,0,1] # 奖励集。只有最后的宝藏所在位置才有奖励1,其他皆为0 q_table = pd.DataFrame(data=[[0 for _ in actions] for _ in states],
index=states, columns=actions) def update_env(state):
'''更新环境,并打印'''
env = list('-----T') # 环境 env[state] = 'o' # 更新环境
print('\r{}'.format(''.join(env)), end='')
time.sleep(0.1) def get_next_state(state, action):
'''对状态执行动作后,得到下一状态'''
global states
# l,r,n = -1,+1,0
if action == 'right' and state != states[-1]: # 除末状态(位置),向右+1
next_state = state + 1
elif action == 'left' and state != states[0]: # 除首状态(位置),向左-1
next_state = state -1
else:
next_state = state
return next_state def get_valid_actions(state):
'''取当前状态下的合法动作集合,与reward无关!'''
global actions # ['left', 'right']
valid_actions = set(actions)
if state == states[0]: # 首状态(位置),则 不能向左
valid_actions -= set(['left'])
if state == states[-1]: # 末状态(位置),则 不能向右
valid_actions -= set(['right'])
return list(valid_actions) for i in range(13):
#current_state = random.choice(states)
current_state = 0
if random.uniform(0,1) > epsilon: # 探索
current_action = random.choice(get_valid_actions(current_state))
else: # 利用(贪婪)
#current_action = q_table.ix[current_state].idxmax() # 这种写法是有问题的!
s = q_table.ix[current_state].filter(items=get_valid_actions(current_state))
current_action = random.choice(s[s==s.max()].index) # 可能多个最大值,当然,一个更好 update_env(current_state) # 环境相关
total_steps = 0 # 环境相关 while current_state != states[-1]:
next_state = get_next_state(current_state, current_action) if random.uniform(0,1) > epsilon: # 探索
next_action = random.choice(get_valid_actions(next_state))
else: # 利用(贪婪)
#next_action = q_table.ix[next_state].idxmax() # 这种写法是有问题的!可能会陷入死锁
s = q_table.ix[next_state].filter(items=get_valid_actions(next_state))
next_action = random.choice(s[s==s.max()].index) # 可能多个最大值,当然,一个更好 next_state_reward = rewards[next_state]
next_q_value = q_table.ix[next_state, next_action] q_table.ix[current_state, current_action] += alpha * (next_state_reward + gamma * next_q_value - q_table.ix[current_state, current_action]) current_state, current_action = next_state, next_action update_env(current_state) # 环境相关
total_steps += 1 # 环境相关 print('\rEpisode {}: total_steps = {}'.format(i, total_steps), end='') # 环境相关
time.sleep(2) # 环境相关
print('\r ', end='') # 环境相关 print('\nq_table:')
print(q_table)
【强化学习】python 实现 saras 例一的更多相关文章
- 强化学习读书笔记 - 05 - 蒙特卡洛方法(Monte Carlo Methods)
强化学习读书笔记 - 05 - 蒙特卡洛方法(Monte Carlo Methods) 学习笔记: Reinforcement Learning: An Introduction, Richard S ...
- (待续)【转载】 DeepMind发Nature子刊:通过元强化学习重新理解多巴胺
原文地址: http://www.dataguru.cn/article-13548-1.html -------------------------------------------------- ...
- 【强化学习】python 实现 q-learning 例一
本文作者:hhh5460 本文地址:https://www.cnblogs.com/hhh5460/p/10134018.html 问题情境 -o---T# T 就是宝藏的位置, o 是探索者的位置 ...
- 强化学习-时序差分算法(TD)和SARAS法
1. 前言 我们前面介绍了第一个Model Free的模型蒙特卡洛算法.蒙特卡罗法在估计价值时使用了完整序列的长期回报.而且蒙特卡洛法有较大的方差,模型不是很稳定.本节我们介绍时序差分法,时序差分法不 ...
- 以股票RSI指标为例,学习Python发送邮件功能(含RSI指标确定卖点策略)
本人之前写过若干“给程序员加财商”的系列文,目的是通过股票案例讲述Python知识点,让大家在学习Python的同时还能掌握相关的股票知识,所谓一举两得. 在之前的系列文里,大家能看到K线,均线,成交 ...
- 强化学习 平台 openAI 的 gym 安装 (Ubuntu环境下如何安装Python的gym模块)
openAI 公司给出了一个集成较多环境的强化学习平台 gym , 本篇博客主要是讲它怎么安装. openAI公司的主页: https://www.openai.com/systems/ 从主页上我 ...
- 【转】强化学习(一)Deep Q-Network
原文地址:https://www.hhyz.me/2018/08/05/2018-08-05-RL/ 1. 前言 虽然将深度学习和增强学习结合的想法在几年前就有人尝试,但真正成功的开端就是DeepMi ...
- 深度强化学习(DQN-Deep Q Network)之应用-Flappy Bird
深度强化学习(DQN-Deep Q Network)之应用-Flappy Bird 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-fu ...
- 机器学习之强化学习概览(Machine Learning for Humans: Reinforcement Learning)
声明:本文翻译自Vishal Maini在Medium平台上发布的<Machine Learning for Humans>的教程的<Part 5: Reinforcement Le ...
随机推荐
- macos 下安装brew
1.终端执行 /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master ...
- centos 7.2 64位 docker安装lamp环境
1. 删除docker可能有的早期版本 yum remove docker \ docker-client \ docker-client-latest \ docker-common \ docke ...
- python常用模块之re模块(正则)
python种的re模块常用的5种方法,分别是re.match re.search re.findall re.split re.sub. 在介绍五种方法之前,需要介绍一下正则的基础. . ...
- 4.2Python数据类型(2)之布尔类型
返回总目录 目录: 1.布尔类型的概念和分类: 2.布尔类型的本质 3.布尔类型的应用 (一)布尔类型的概念和分类: (1)概念: 布尔类型(bool)就是用于判断真假的数据类型 (2)分类: Pyt ...
- SAP ABAP 查找用户出口
1.查找事物代码程序名 2.查找用户出口 T-CODE:SE80 在子例程中查找以USEREXIT开头的子程序.
- CSRF 漏洞原理详解及防御方法
跨站请求伪造:攻击者可以劫持其他用户进行的一些请求,利用用户身份进行恶意操作. 例如:请求http://x.com/del.php?id=1 是一个删除ID为1的账号,但是只有管理员才可以操作,如果攻 ...
- Mybatis&orcale update语句中接收参数为对象
Mybatis的 mapper.xml 中 update 语句使用 if 标签判断对像属性是否为空值. UserDTO是传过来参数的类型,userDTO是在mapperDao接口中给更新方法的参数起的 ...
- __iter___和__next__方法
__iter__方法变成一个迭代器类对象, 迭代器类要实现__next__方法
- Python向上取整,向下取整以及四舍五入函数
import math f = 11.2 print math.ceil(f) #向上取整 print math.floor(f) #向下取整 print round(f) #四舍五入 #这三个函数的 ...
- 转://oracle 重新编译用户无效对象
select owner,object_name, replace(object_type,' ','') object_type,to_char(created,'yyyy-mm-dd') as c ...