1.简介

ConcurrentLinkedQueue是JUC中的基于链表的无锁队列实现。本文将解读其源码实现。

2. 论文

ConcurrentLinkedQueue的实现是以Maged M. Michael和Michael L. Scott的论文Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue Algorithms为原型进行改造的,不妨阅读此篇论文。

下面我将论文中的介绍的入队与出队用接近Java语言的形式改写并加上注释。

enq
node = new Node(value, null)
loop
tail = this.tail
next = tail.next
# 如果tail已经不是尾节点,重试循环。
if tail == this.tail
# 队列处于稳定状态,尝试插入节点。
if next == null
# 插入新节点,将尾节点与新节点链接起来。
# 如果成功则退出循环,否则重试。
if CAS(tail.next, next, <node, next.count+1>
break
# 队列处于中间状态,推进尾节点。
else
CAS (this.tail, tail, <next, tail.count+1>)
# 将尾节点更新为新插入的节点,失败没关系,说明其它线程更新了尾节点。
CAS(this.tail, tail, <node, tail.count+1>) deq
loop
head = this.head
tail = this.tail
next = head.next
# 如果head已经不是头节点,重试循环。
if head == this.head
if head == tail
# 队列处于稳定状态则出队失败。
if next == null
return false
# 有其它线程正在入队,推进尾节点。
CAS(this.tail, tail, <next, tail.count+1>)
else
# 成功将队列头节点CAS到下一个节点则出队成功,退出循环。
if CAS(this.head, head, <next, head.count+1>)
break
return true

由于Java自带垃圾回收,加上ConcurrentLinkedQueue对节点进行CAS且其内外方法都保证了节点不会复用,所以并不会出现ABA问题,因此节点不需要版本号。

3. ConcurrentLinkedQueue的实现

3.1 数据结构

正如典型的队列设计,内部的节点用如下的Node类表示

/**
* 仅展示属性,其余略去。
*/
private static class Node<E> {
volatile E item;
volatile Node<E> next;
}

值得一提的是Node中有一个lazySetNext方法

void lazySetNext(Node<E> val) {
UNSAFE.putOrderedObject(this, nextOffset, val);
}

与AtomicReference类一样,使用了UNSAFE.putOrderedObject方法来实现低延迟的写入。这个方法会插入Store-Store内存屏障,也就是保证写操作不会重排。而不会插入普通volatile写会插入的Store-Load屏障。

ConcurrentLinkedQueue在构造时会初始化head和tail为一个item为null的节点,作为哨兵节点。

private transient volatile Node<E> head;

private transient volatile Node<E> tail;

3.2 设计思想

ConcurrentLinkedQueue的源码还是有些晦涩难懂的,但是doc非常详细,对阅读源码非常有帮助。如果带着从doc中介绍的设计与实现思路去读源码会轻松不少。

ConcurrentLinkedQueue是不允许向其插入空的item的,对于删除元素,会将其item给CAS为null,一旦某个元素的item变为null,就意味着它不再是队列中的有效元素了,并且会将已删除节点的next指针指向自身。

这样可以实现尽可能快地从已删除的元素跳过后面删除的元素,回到队列中。

ConcurrentLinkedQueue具有以下这些性质:

  • 队列中任意时刻只有最后一个元素的next为null
  • head和tail不会是null(哨兵节点的设计)
  • head未必是队列中第一个元素(head指向的可能是一个已经被移除的元素)
  • 队列中的有效元素都可以从head通过succ方法遍历到
  • tail未必是队列中最后一个元素(tail.next可以不为null)
  • 队列中的最后一个元素可以从tail通过succ方法遍历到
  • tail甚至可以是head的前驱

这里提到了succ方法,那么先睹为快,看一下succ方法吧。

final Node<E> succ(Node<E> p) {
Node<E> next = p.next;
// 如果next就是自身(代表已经不在队列中),则返回head,否则返回next。
return (p == next) ? head : next;
}

因为ConcurrentLinkedQueue中的head和tail都可能会滞后,这其实是一种避免频繁CAS的优化。当然过度的滞后也是会影响操作效率的,所以在具体实现的时候,会尽可能能有机会更新head和tail就去更新它们。

3.3 源码解读

3.3.1 offer方法

public boolean offer(E e) {
checkNotNull(e);
final Node<E> newNode = new Node<E>(e); for (Node<E> t = tail, p = t;;) {
Node<E> q = p.next;
// 如果p的next为null,则说明此刻p为队列中最后一个元素。
if (q == null) {
/*
* cas成功则newNode成功入队,只是此刻tail还是老的。
* 否则说明因为线程竞争的关系没有成功入队,需要重试。
*/
if (p.casNext(null, newNode)) {
/*
* t是当前线程读到的tail快照,p是上面CAS时队列中最后一个元素。
* 这两者不一致说明该更新tail了。
* 如果CAS失败则说明tail已经被其它线程更新过了,这没关系。
*/
if (p != t)
casTail(t, newNode);
return true;
}
}
/*
* ConcurrentLinkedQueue的一个设计就是对于已经移除的元素,
* 会将next置为本身,用于判断当前元素已经出队,接着从head继续遍历(可以看succ方法)。
*
* 在整个offer方法的执行过程中,p一定是等于t或者在t的后面的,
* 因此如果p已经不在队列中的话,t也一定不在队列中了。
*
* 所以重新读取一次tail到快照t,
* 如果t未发生变化,就从head开始继续下去。
* 否则让p从新的t开始继续尝试入队是一个更好的选择(此时新的t很可能在head后面)
*/
else if (p == q)
p = (t != (t = tail)) ? t : head;
else
/*
* 如果p与t相等,则让p继续向后移动一个节点。
*
* 如果p和t不相等,则说明已经经历至少两轮循环(仍然没有入队),
* 则重新读取一次tail到t,如果t发生了变化,则从t开始再次尝试入队。
*/
p = (p != t && t != (t = tail)) ? t : q;
}
}

3.3.2 poll方法

public E poll() {
restartFromHead:
for (;;) {
// p初始设置为head。
for (Node<E> h = head, p = h, q;;) {
E item = p.item; /*
* 成功将item给CAS为null则说明成功移除了元素。
* 这里的item != null判断也是为了尽可能避免无意义的CAS。
*/
if (item != null && p.casItem(item, null)) {
/*
* p如果与h不相等,则说明head很可能滞后,指向已不在队列中的元素。
* 如果此时p有后继,则更新head为p.next,
* 否则尽管p已经被移除出去了,也只能更新head为p了。
*/
if (p != h)
updateHead(h, ((q = p.next) != null) ? q : p);
return item;
}
/*
* 如果没能成功移除p,且p也没有后继,则说明p为此时队列的最后元素。
* 所以更新head为p并返回null。
*
* 注意这里h和p是可能相等的,updateHead会判断h和p是否相等以避免无意义CAS。
*/
else if ((q = p.next) == null) {
updateHead(h, p);
return null;
}
/*
* p存在后继,需要检查是否p还在队列中。
* 如果p已经不在队列中(p==q),则重新读一次head到快照h并让p从h开始再尝试移除元素。
*
* 因为一定有其它线程已经通过updateHead将head从p给CAS为新的head并且令p节点的next指向p自己,
* 这时再一步步往后面走显然不值得,不如从现在的head开始重新来过。
*/
else if (p == q)
continue restartFromHead;
// 继续向后走一个节点尝试移除元素。
else
p = q;
}
}
} final void updateHead(Node<E> h, Node<E> p) {
if (h != p && casHead(h, p))
h.lazySetNext(h);
}

3.3.3 peek方法

public E peek() {
restartFromHead:
for (;;) {
for (Node<E> h = head, p = h, q;;) {
E item = p.item;
// 其实这里的if就是将poll中的if前两个分支做了个合并。
if (item != null || (q = p.next) == null) {
updateHead(h, p);
return item;
}
else if (p == q)
continue restartFromHead;
else
p = q;
}
}
}

3.3.4 remove方法

public boolean remove(Object o) {
if (o != null) {
Node<E> next, pred = null;
// p为当前节点,pred为p前驱,next为后继。
for (Node<E> p = first(); p != null; pred = p, p = next) {
boolean removed = false;
E item = p.item;
// item为null代表元素已经无效(认为不在队列中)
if (item != null) {
// 不是要删除的元素。
if (!o.equals(item)) {
next = succ(p);
continue;
}
removed = p.casItem(item, null);
} next = succ(p);
if (pred != null && next != null)
// 前驱与后继连上。
pred.casNext(p, next);
if (removed)
return true;
}
}
return false;
}

3.3.5 size方法

/**
* size方法效率其实挺差的,是一个O(n)的遍历。
*/
public int size() {
int count = 0;
for (Node<E> p = first(); p != null; p = succ(p))
if (p.item != null)
// 最多只返回Integer.MAX_VALUE
if (++count == Integer.MAX_VALUE)
break;
return count;
} /**
* 这个方法和poll/peek方法差不多,只不过返回的是Node而不是元素。
*
* 之所以peek方法没有复用first方法的原因有2点
* 1. 会增加一次volatile读
* 2. 有可能会因为和poll方法的竞争,导致出现非期望的结果。
* 比如first返回的node非null,里面的item也不是null。
* 但是等到poll方法返回从first方法拿到的node的item的时候,item已经被poll方法CAS为null了。
* 那这个问题只能再peek中增加重试,这未免代价太高了。
*
* 这就是first和peek代码没有复用的原因。
*/
Node<E> first() {
restartFromHead:
for (;;) {
for (Node<E> h = head, p = h, q;;) {
boolean hasItem = (p.item != null);
if (hasItem || (q = p.next) == null) {
updateHead(h, p);
return hasItem ? p : null;
}
else if (p == q)
continue restartFromHead;
else
p = q;
}
}
}

ConcurrentLinkedQueue源码解读的更多相关文章

  1. ConcurrentLinkedQueue 源码解读

    一.介绍 ConcurrentLinkedQueue 是一个基于链接节点的无界线程安全队列,它采用先进先出的规则对节点进行排序,当我们添加一个元素的时候,它会添加到队列的尾部:当我们获取一个元素时,它 ...

  2. JDK容器类List,Set,Queue源码解读

    List,Set,Queue都是继承Collection接口的单列集合接口.List常用的实现主要有ArrayList,LinkedList,List中的数据是有序可重复的.Set常用的实现主要是Ha ...

  3. SDWebImage源码解读之SDWebImageDownloaderOperation

    第七篇 前言 本篇文章主要讲解下载操作的相关知识,SDWebImageDownloaderOperation的主要任务是把一张图片从服务器下载到内存中.下载数据并不难,如何对下载这一系列的任务进行设计 ...

  4. SDWebImage源码解读 之 NSData+ImageContentType

    第一篇 前言 从今天开始,我将开启一段源码解读的旅途了.在这里先暂时不透露具体解读的源码到底是哪些?因为也可能随着解读的进行会更改计划.但能够肯定的是,这一系列之中肯定会有Swift版本的代码. 说说 ...

  5. SDWebImage源码解读 之 UIImage+GIF

    第二篇 前言 本篇是和GIF相关的一个UIImage的分类.主要提供了三个方法: + (UIImage *)sd_animatedGIFNamed:(NSString *)name ----- 根据名 ...

  6. SDWebImage源码解读 之 SDWebImageCompat

    第三篇 前言 本篇主要解读SDWebImage的配置文件.正如compat的定义,该配置文件主要是兼容Apple的其他设备.也许我们真实的开发平台只有一个,但考虑各个平台的兼容性,对于框架有着很重要的 ...

  7. SDWebImage源码解读_之SDWebImageDecoder

    第四篇 前言 首先,我们要弄明白一个问题? 为什么要对UIImage进行解码呢?难道不能直接使用吗? 其实不解码也是可以使用的,假如说我们通过imageNamed:来加载image,系统默认会在主线程 ...

  8. SDWebImage源码解读之SDWebImageCache(上)

    第五篇 前言 本篇主要讲解图片缓存类的知识,虽然只涉及了图片方面的缓存的设计,但思想同样适用于别的方面的设计.在架构上来说,缓存算是存储设计的一部分.我们把各种不同的存储内容按照功能进行切割后,图片缓 ...

  9. SDWebImage源码解读之SDWebImageCache(下)

    第六篇 前言 我们在SDWebImageCache(上)中了解了这个缓存类大概的功能是什么?那么接下来就要看看这些功能是如何实现的? 再次强调,不管是图片的缓存还是其他各种不同形式的缓存,在原理上都极 ...

随机推荐

  1. python 浅析模块,包及其相关用法

    今天买了一本关于模块的书,说实话,模块真的太多了,小编许多也不知道,要是把模块全讲完,可能得出本书了,所以小编在自己有限的能力范围内在这里浅析一下自己的见解,同时讲讲几个常用的模块. 这里是2018. ...

  2. sip 注册流程

    基本注册流程示意图: 注册流程描述如下: 1.         SIP代理向SIP服务器发送REGISTER请求: 2.         SIP服务器向SIP代理发送响应401,并在响应的消息头WWW ...

  3. 学习实践之DEMO《nodejs模拟POST登陆》

    一个简单的PHP接收参数页面 <?php header("content-type:text/html;charset=utf-8"); if($_POST[username ...

  4. 从零搭建生产环境的ghost2.0博客

    当前安装过程是在ghost cli 1.9.2上的,由于ghost更新特别快,我安装我个人博客cmlanche.com的时候还是1.9.1,当时没碰到啥问题,到1.9.2就有一点点不一样了,所以要注意 ...

  5. [译]Node.js框架对比:Express/Koa/Hapi

    本文翻译自: https://www.airpair.com/node.js/posts/nodejs-framework-comparison-express-koa-hapi 1.介绍 直至今日, ...

  6. nopCommerce 3.2新功能

    NopCommerce版本3.20,上周被释放,对于那些你谁还不熟悉新版本或刚经过脱脂发行说明我们的新功能的详细介绍. 在nopCommerce 3.20新功能的工作往往需要某些设置或语言资源的快速修 ...

  7. iOS SDK开发汇总

    以前也做过静态库的开发,不过都是一些简单的调用,最近在做项目的时候,发现其中还有很多问题,所以建个小项目简单记录遇到的问题以及正确的解决办法. 在项目中遇到的问题如下:xib文件获取不到, story ...

  8. 【Java基础】11、java方法中只有值传递,没有引用传递

    public class Example { String testString = new String("good"); char[] testCharArray = {'a' ...

  9. Linux Centos下安装jdk

    1.准备工作 https://www.cnblogs.com/dddyyy/p/9746942.html 上面这篇博客讲了如何安装linux 你想安装的jdk(对应版本的jdk) 连接Linux的软件 ...

  10. CSS图片两端对齐,自适应列表布局末行对齐修复实例页面

    写在前面 前端开发,图片两端对齐,是十分常见的,也是十分痛苦的,我试过好多方法,通过整理,认为下面还是比较靠谱的,在实践中大家可以试试,欢迎一起学习,一起进步 HTML代码 HTML代码非常简单,用的 ...