谷歌开源的一个BTREE实现 Go语言
// Copyright 2014 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License. package btree import (
"flag"
"fmt"
"math/rand"
"reflect"
"sort"
"sync"
"testing"
"time"
) func init() {
seed := time.Now().Unix()
fmt.Println(seed)
rand.Seed(seed)
} // perm returns a random permutation of n Int items in the range [0, n).
func perm(n int) (out []Item) {
for _, v := range rand.Perm(n) {
out = append(out, Int(v))
}
return
} // rang returns an ordered list of Int items in the range [0, n).
func rang(n int) (out []Item) {
for i := ; i < n; i++ {
out = append(out, Int(i))
}
return
} // all extracts all items from a tree in order as a slice.
func all(t *BTree) (out []Item) {
t.Ascend(func(a Item) bool {
out = append(out, a)
return true
})
return
} // rangerev returns a reversed ordered list of Int items in the range [0, n).
func rangrev(n int) (out []Item) {
for i := n - ; i >= ; i-- {
out = append(out, Int(i))
}
return
} // allrev extracts all items from a tree in reverse order as a slice.
func allrev(t *BTree) (out []Item) {
t.Descend(func(a Item) bool {
out = append(out, a)
return true
})
return
} var btreeDegree = flag.Int("degree", , "B-Tree degree") func TestBTree(t *testing.T) {
tr := New(*btreeDegree)
const treeSize =
for i := ; i < ; i++ {
if min := tr.Min(); min != nil {
t.Fatalf("empty min, got %+v", min)
}
if max := tr.Max(); max != nil {
t.Fatalf("empty max, got %+v", max)
}
for _, item := range perm(treeSize) {
if x := tr.ReplaceOrInsert(item); x != nil {
t.Fatal("insert found item", item)
}
}
for _, item := range perm(treeSize) {
if x := tr.ReplaceOrInsert(item); x == nil {
t.Fatal("insert didn't find item", item)
}
}
if min, want := tr.Min(), Item(Int()); min != want {
t.Fatalf("min: want %+v, got %+v", want, min)
}
if max, want := tr.Max(), Item(Int(treeSize-)); max != want {
t.Fatalf("max: want %+v, got %+v", want, max)
}
got := all(tr)
want := rang(treeSize)
if !reflect.DeepEqual(got, want) {
t.Fatalf("mismatch:\n got: %v\nwant: %v", got, want)
} gotrev := allrev(tr)
wantrev := rangrev(treeSize)
if !reflect.DeepEqual(gotrev, wantrev) {
t.Fatalf("mismatch:\n got: %v\nwant: %v", got, want)
} for _, item := range perm(treeSize) {
if x := tr.Delete(item); x == nil {
t.Fatalf("didn't find %v", item)
}
}
if got = all(tr); len(got) > {
t.Fatalf("some left!: %v", got)
}
}
} func ExampleBTree() {
tr := New(*btreeDegree)
for i := Int(); i < ; i++ {
tr.ReplaceOrInsert(i)
}
fmt.Println("len: ", tr.Len())
fmt.Println("get3: ", tr.Get(Int()))
fmt.Println("get100: ", tr.Get(Int()))
fmt.Println("del4: ", tr.Delete(Int()))
fmt.Println("del100: ", tr.Delete(Int()))
fmt.Println("replace5: ", tr.ReplaceOrInsert(Int()))
fmt.Println("replace100:", tr.ReplaceOrInsert(Int()))
fmt.Println("min: ", tr.Min())
fmt.Println("delmin: ", tr.DeleteMin())
fmt.Println("max: ", tr.Max())
fmt.Println("delmax: ", tr.DeleteMax())
fmt.Println("len: ", tr.Len())
// Output:
// len: 10
// get3: 3
// get100: <nil>
// del4: 4
// del100: <nil>
// replace5: 5
// replace100: <nil>
// min: 0
// delmin: 0
// max: 100
// delmax: 100
// len: 8
} func TestDeleteMin(t *testing.T) {
tr := New()
for _, v := range perm() {
tr.ReplaceOrInsert(v)
}
var got []Item
for v := tr.DeleteMin(); v != nil; v = tr.DeleteMin() {
got = append(got, v)
}
if want := rang(); !reflect.DeepEqual(got, want) {
t.Fatalf("ascendrange:\n got: %v\nwant: %v", got, want)
}
} func TestDeleteMax(t *testing.T) {
tr := New()
for _, v := range perm() {
tr.ReplaceOrInsert(v)
}
var got []Item
for v := tr.DeleteMax(); v != nil; v = tr.DeleteMax() {
got = append(got, v)
}
// Reverse our list.
for i := ; i < len(got)/; i++ {
got[i], got[len(got)-i-] = got[len(got)-i-], got[i]
}
if want := rang(); !reflect.DeepEqual(got, want) {
t.Fatalf("ascendrange:\n got: %v\nwant: %v", got, want)
}
} func TestAscendRange(t *testing.T) {
tr := New()
for _, v := range perm() {
tr.ReplaceOrInsert(v)
}
var got []Item
tr.AscendRange(Int(), Int(), func(a Item) bool {
got = append(got, a)
return true
})
if want := rang()[:]; !reflect.DeepEqual(got, want) {
t.Fatalf("ascendrange:\n got: %v\nwant: %v", got, want)
}
got = got[:]
tr.AscendRange(Int(), Int(), func(a Item) bool {
if a.(Int) > {
return false
}
got = append(got, a)
return true
})
if want := rang()[:]; !reflect.DeepEqual(got, want) {
t.Fatalf("ascendrange:\n got: %v\nwant: %v", got, want)
}
} func TestDescendRange(t *testing.T) {
tr := New()
for _, v := range perm() {
tr.ReplaceOrInsert(v)
}
var got []Item
tr.DescendRange(Int(), Int(), func(a Item) bool {
got = append(got, a)
return true
})
if want := rangrev()[:]; !reflect.DeepEqual(got, want) {
t.Fatalf("descendrange:\n got: %v\nwant: %v", got, want)
}
got = got[:]
tr.DescendRange(Int(), Int(), func(a Item) bool {
if a.(Int) < {
return false
}
got = append(got, a)
return true
})
if want := rangrev()[:]; !reflect.DeepEqual(got, want) {
t.Fatalf("descendrange:\n got: %v\nwant: %v", got, want)
}
}
func TestAscendLessThan(t *testing.T) {
tr := New(*btreeDegree)
for _, v := range perm() {
tr.ReplaceOrInsert(v)
}
var got []Item
tr.AscendLessThan(Int(), func(a Item) bool {
got = append(got, a)
return true
})
if want := rang()[:]; !reflect.DeepEqual(got, want) {
t.Fatalf("ascendrange:\n got: %v\nwant: %v", got, want)
}
got = got[:]
tr.AscendLessThan(Int(), func(a Item) bool {
if a.(Int) > {
return false
}
got = append(got, a)
return true
})
if want := rang()[:]; !reflect.DeepEqual(got, want) {
t.Fatalf("ascendrange:\n got: %v\nwant: %v", got, want)
}
} func TestDescendLessOrEqual(t *testing.T) {
tr := New(*btreeDegree)
for _, v := range perm() {
tr.ReplaceOrInsert(v)
}
var got []Item
tr.DescendLessOrEqual(Int(), func(a Item) bool {
got = append(got, a)
return true
})
if want := rangrev()[:]; !reflect.DeepEqual(got, want) {
t.Fatalf("descendlessorequal:\n got: %v\nwant: %v", got, want)
}
got = got[:]
tr.DescendLessOrEqual(Int(), func(a Item) bool {
if a.(Int) < {
return false
}
got = append(got, a)
return true
})
if want := rangrev()[:]; !reflect.DeepEqual(got, want) {
t.Fatalf("descendlessorequal:\n got: %v\nwant: %v", got, want)
}
}
func TestAscendGreaterOrEqual(t *testing.T) {
tr := New(*btreeDegree)
for _, v := range perm() {
tr.ReplaceOrInsert(v)
}
var got []Item
tr.AscendGreaterOrEqual(Int(), func(a Item) bool {
got = append(got, a)
return true
})
if want := rang()[:]; !reflect.DeepEqual(got, want) {
t.Fatalf("ascendrange:\n got: %v\nwant: %v", got, want)
}
got = got[:]
tr.AscendGreaterOrEqual(Int(), func(a Item) bool {
if a.(Int) > {
return false
}
got = append(got, a)
return true
})
if want := rang()[:]; !reflect.DeepEqual(got, want) {
t.Fatalf("ascendrange:\n got: %v\nwant: %v", got, want)
}
} func TestDescendGreaterThan(t *testing.T) {
tr := New(*btreeDegree)
for _, v := range perm() {
tr.ReplaceOrInsert(v)
}
var got []Item
tr.DescendGreaterThan(Int(), func(a Item) bool {
got = append(got, a)
return true
})
if want := rangrev()[:]; !reflect.DeepEqual(got, want) {
t.Fatalf("descendgreaterthan:\n got: %v\nwant: %v", got, want)
}
got = got[:]
tr.DescendGreaterThan(Int(), func(a Item) bool {
if a.(Int) < {
return false
}
got = append(got, a)
return true
})
if want := rangrev()[:]; !reflect.DeepEqual(got, want) {
t.Fatalf("descendgreaterthan:\n got: %v\nwant: %v", got, want)
}
} const benchmarkTreeSize = func BenchmarkInsert(b *testing.B) {
b.StopTimer()
insertP := perm(benchmarkTreeSize)
b.StartTimer()
i :=
for i < b.N {
tr := New(*btreeDegree)
for _, item := range insertP {
tr.ReplaceOrInsert(item)
i++
if i >= b.N {
return
}
}
}
} func BenchmarkSeek(b *testing.B) {
b.StopTimer()
size :=
insertP := perm(size)
tr := New(*btreeDegree)
for _, item := range insertP {
tr.ReplaceOrInsert(item)
}
b.StartTimer() for i := ; i < b.N; i++ {
tr.AscendGreaterOrEqual(Int(i%size), func(i Item) bool { return false })
}
} func BenchmarkDeleteInsert(b *testing.B) {
b.StopTimer()
insertP := perm(benchmarkTreeSize)
tr := New(*btreeDegree)
for _, item := range insertP {
tr.ReplaceOrInsert(item)
}
b.StartTimer()
for i := ; i < b.N; i++ {
tr.Delete(insertP[i%benchmarkTreeSize])
tr.ReplaceOrInsert(insertP[i%benchmarkTreeSize])
}
} func BenchmarkDeleteInsertCloneOnce(b *testing.B) {
b.StopTimer()
insertP := perm(benchmarkTreeSize)
tr := New(*btreeDegree)
for _, item := range insertP {
tr.ReplaceOrInsert(item)
}
tr = tr.Clone()
b.StartTimer()
for i := ; i < b.N; i++ {
tr.Delete(insertP[i%benchmarkTreeSize])
tr.ReplaceOrInsert(insertP[i%benchmarkTreeSize])
}
} func BenchmarkDeleteInsertCloneEachTime(b *testing.B) {
b.StopTimer()
insertP := perm(benchmarkTreeSize)
tr := New(*btreeDegree)
for _, item := range insertP {
tr.ReplaceOrInsert(item)
}
b.StartTimer()
for i := ; i < b.N; i++ {
tr = tr.Clone()
tr.Delete(insertP[i%benchmarkTreeSize])
tr.ReplaceOrInsert(insertP[i%benchmarkTreeSize])
}
} func BenchmarkDelete(b *testing.B) {
b.StopTimer()
insertP := perm(benchmarkTreeSize)
removeP := perm(benchmarkTreeSize)
b.StartTimer()
i :=
for i < b.N {
b.StopTimer()
tr := New(*btreeDegree)
for _, v := range insertP {
tr.ReplaceOrInsert(v)
}
b.StartTimer()
for _, item := range removeP {
tr.Delete(item)
i++
if i >= b.N {
return
}
}
if tr.Len() > {
panic(tr.Len())
}
}
} func BenchmarkGet(b *testing.B) {
b.StopTimer()
insertP := perm(benchmarkTreeSize)
removeP := perm(benchmarkTreeSize)
b.StartTimer()
i :=
for i < b.N {
b.StopTimer()
tr := New(*btreeDegree)
for _, v := range insertP {
tr.ReplaceOrInsert(v)
}
b.StartTimer()
for _, item := range removeP {
tr.Get(item)
i++
if i >= b.N {
return
}
}
}
} func BenchmarkGetCloneEachTime(b *testing.B) {
b.StopTimer()
insertP := perm(benchmarkTreeSize)
removeP := perm(benchmarkTreeSize)
b.StartTimer()
i :=
for i < b.N {
b.StopTimer()
tr := New(*btreeDegree)
for _, v := range insertP {
tr.ReplaceOrInsert(v)
}
b.StartTimer()
for _, item := range removeP {
tr = tr.Clone()
tr.Get(item)
i++
if i >= b.N {
return
}
}
}
} type byInts []Item func (a byInts) Len() int {
return len(a)
} func (a byInts) Less(i, j int) bool {
return a[i].(Int) < a[j].(Int)
} func (a byInts) Swap(i, j int) {
a[i], a[j] = a[j], a[i]
} func BenchmarkAscend(b *testing.B) {
arr := perm(benchmarkTreeSize)
tr := New(*btreeDegree)
for _, v := range arr {
tr.ReplaceOrInsert(v)
}
sort.Sort(byInts(arr))
b.ResetTimer()
for i := ; i < b.N; i++ {
j :=
tr.Ascend(func(item Item) bool {
if item.(Int) != arr[j].(Int) {
b.Fatalf("mismatch: expected: %v, got %v", arr[j].(Int), item.(Int))
}
j++
return true
})
}
} func BenchmarkDescend(b *testing.B) {
arr := perm(benchmarkTreeSize)
tr := New(*btreeDegree)
for _, v := range arr {
tr.ReplaceOrInsert(v)
}
sort.Sort(byInts(arr))
b.ResetTimer()
for i := ; i < b.N; i++ {
j := len(arr) -
tr.Descend(func(item Item) bool {
if item.(Int) != arr[j].(Int) {
b.Fatalf("mismatch: expected: %v, got %v", arr[j].(Int), item.(Int))
}
j--
return true
})
}
}
func BenchmarkAscendRange(b *testing.B) {
arr := perm(benchmarkTreeSize)
tr := New(*btreeDegree)
for _, v := range arr {
tr.ReplaceOrInsert(v)
}
sort.Sort(byInts(arr))
b.ResetTimer()
for i := ; i < b.N; i++ {
j :=
tr.AscendRange(Int(), arr[len(arr)-], func(item Item) bool {
if item.(Int) != arr[j].(Int) {
b.Fatalf("mismatch: expected: %v, got %v", arr[j].(Int), item.(Int))
}
j++
return true
})
if j != len(arr)- {
b.Fatalf("expected: %v, got %v", len(arr)-, j)
}
}
} func BenchmarkDescendRange(b *testing.B) {
arr := perm(benchmarkTreeSize)
tr := New(*btreeDegree)
for _, v := range arr {
tr.ReplaceOrInsert(v)
}
sort.Sort(byInts(arr))
b.ResetTimer()
for i := ; i < b.N; i++ {
j := len(arr) -
tr.DescendRange(arr[len(arr)-], Int(), func(item Item) bool {
if item.(Int) != arr[j].(Int) {
b.Fatalf("mismatch: expected: %v, got %v", arr[j].(Int), item.(Int))
}
j--
return true
})
if j != {
b.Fatalf("expected: %v, got %v", len(arr)-, j)
}
}
}
func BenchmarkAscendGreaterOrEqual(b *testing.B) {
arr := perm(benchmarkTreeSize)
tr := New(*btreeDegree)
for _, v := range arr {
tr.ReplaceOrInsert(v)
}
sort.Sort(byInts(arr))
b.ResetTimer()
for i := ; i < b.N; i++ {
j :=
k :=
tr.AscendGreaterOrEqual(Int(), func(item Item) bool {
if item.(Int) != arr[j].(Int) {
b.Fatalf("mismatch: expected: %v, got %v", arr[j].(Int), item.(Int))
}
j++
k++
return true
})
if j != len(arr) {
b.Fatalf("expected: %v, got %v", len(arr), j)
}
if k != len(arr)- {
b.Fatalf("expected: %v, got %v", len(arr)-, k)
}
}
}
func BenchmarkDescendLessOrEqual(b *testing.B) {
arr := perm(benchmarkTreeSize)
tr := New(*btreeDegree)
for _, v := range arr {
tr.ReplaceOrInsert(v)
}
sort.Sort(byInts(arr))
b.ResetTimer()
for i := ; i < b.N; i++ {
j := len(arr) -
k := len(arr)
tr.DescendLessOrEqual(arr[len(arr)-], func(item Item) bool {
if item.(Int) != arr[j].(Int) {
b.Fatalf("mismatch: expected: %v, got %v", arr[j].(Int), item.(Int))
}
j--
k--
return true
})
if j != - {
b.Fatalf("expected: %v, got %v", -, j)
}
if k != {
b.Fatalf("expected: %v, got %v", , k)
}
}
} const cloneTestSize = func cloneTest(t *testing.T, b *BTree, start int, p []Item, wg *sync.WaitGroup, trees *[]*BTree) {
t.Logf("Starting new clone at %v", start)
*trees = append(*trees, b)
for i := start; i < cloneTestSize; i++ {
b.ReplaceOrInsert(p[i])
if i%(cloneTestSize/) == {
wg.Add()
go cloneTest(t, b.Clone(), i+, p, wg, trees)
}
}
wg.Done()
} func TestCloneConcurrentOperations(t *testing.T) {
b := New(*btreeDegree)
trees := []*BTree{}
p := perm(cloneTestSize)
var wg sync.WaitGroup
wg.Add()
go cloneTest(t, b, , p, &wg, &trees)
wg.Wait()
want := rang(cloneTestSize)
t.Logf("Starting equality checks on %d trees", len(trees))
for i, tree := range trees {
if !reflect.DeepEqual(want, all(tree)) {
t.Errorf("tree %v mismatch", i)
}
}
t.Log("Removing half from first half")
toRemove := rang(cloneTestSize)[cloneTestSize/:]
for i := ; i < len(trees)/; i++ {
tree := trees[i]
wg.Add()
go func() {
for _, item := range toRemove {
tree.Delete(item)
}
wg.Done()
}()
}
wg.Wait()
t.Log("Checking all values again")
for i, tree := range trees {
var wantpart []Item
if i < len(trees)/ {
wantpart = want[:cloneTestSize/]
} else {
wantpart = want
}
if got := all(tree); !reflect.DeepEqual(wantpart, got) {
t.Errorf("tree %v mismatch, want %v got %v", i, len(want), len(got))
}
}
} func BenchmarkDeleteAndRestore(b *testing.B) {
items := perm()
b.ResetTimer()
b.Run(`CopyBigFreeList`, func(b *testing.B) {
fl := NewFreeList()
tr := NewWithFreeList(*btreeDegree, fl)
for _, v := range items {
tr.ReplaceOrInsert(v)
}
b.ReportAllocs()
b.ResetTimer()
for i := ; i < b.N; i++ {
dels := make([]Item, , tr.Len())
tr.Ascend(ItemIterator(func(b Item) bool {
dels = append(dels, b)
return true
}))
for _, del := range dels {
tr.Delete(del)
}
// tr is now empty, we make a new empty copy of it.
tr = NewWithFreeList(*btreeDegree, fl)
for _, v := range items {
tr.ReplaceOrInsert(v)
}
}
})
b.Run(`Copy`, func(b *testing.B) {
tr := New(*btreeDegree)
for _, v := range items {
tr.ReplaceOrInsert(v)
}
b.ReportAllocs()
b.ResetTimer()
for i := ; i < b.N; i++ {
dels := make([]Item, , tr.Len())
tr.Ascend(ItemIterator(func(b Item) bool {
dels = append(dels, b)
return true
}))
for _, del := range dels {
tr.Delete(del)
}
// tr is now empty, we make a new empty copy of it.
tr = New(*btreeDegree)
for _, v := range items {
tr.ReplaceOrInsert(v)
}
}
})
b.Run(`ClearBigFreelist`, func(b *testing.B) {
fl := NewFreeList()
tr := NewWithFreeList(*btreeDegree, fl)
for _, v := range items {
tr.ReplaceOrInsert(v)
}
b.ReportAllocs()
b.ResetTimer()
for i := ; i < b.N; i++ {
tr.Clear(true)
for _, v := range items {
tr.ReplaceOrInsert(v)
}
}
})
b.Run(`Clear`, func(b *testing.B) {
tr := New(*btreeDegree)
for _, v := range items {
tr.ReplaceOrInsert(v)
}
b.ReportAllocs()
b.ResetTimer()
for i := ; i < b.N; i++ {
tr.Clear(true)
for _, v := range items {
tr.ReplaceOrInsert(v)
}
}
})
}
btree_test.go
// Copyright 2014 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License. // +build ignore // This binary compares memory usage between btree and gollrb.
package main import (
"flag"
"fmt"
"math/rand"
"runtime"
"time" "github.com/google/btree"
"github.com/petar/GoLLRB/llrb"
) var (
size = flag.Int("size", , "size of the tree to build")
degree = flag.Int("degree", , "degree of btree")
gollrb = flag.Bool("llrb", false, "use llrb instead of btree")
) func main() {
flag.Parse()
vals := rand.Perm(*size)
var t, v interface{}
v = vals
var stats runtime.MemStats
for i := ; i < ; i++ {
runtime.GC()
}
fmt.Println("-------- BEFORE ----------")
runtime.ReadMemStats(&stats)
fmt.Printf("%+v\n", stats)
start := time.Now()
if *gollrb {
tr := llrb.New()
for _, v := range vals {
tr.ReplaceOrInsert(llrb.Int(v))
}
t = tr // keep it around
} else {
tr := btree.New(*degree)
for _, v := range vals {
tr.ReplaceOrInsert(btree.Int(v))
}
t = tr // keep it around
}
fmt.Printf("%v inserts in %v\n", *size, time.Since(start))
fmt.Println("-------- AFTER ----------")
runtime.ReadMemStats(&stats)
fmt.Printf("%+v\n", stats)
for i := ; i < ; i++ {
runtime.GC()
}
fmt.Println("-------- AFTER GC ----------")
runtime.ReadMemStats(&stats)
fmt.Printf("%+v\n", stats)
if t == v {
fmt.Println("to make sure vals and tree aren't GC'd")
}
}
btree_mem.go
// Copyright 2014 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License. // Package btree implements in-memory B-Trees of arbitrary degree.
//
// btree implements an in-memory B-Tree for use as an ordered data structure.
// It is not meant for persistent storage solutions.
//
// It has a flatter structure than an equivalent red-black or other binary tree,
// which in some cases yields better memory usage and/or performance.
// See some discussion on the matter here:
// http://google-opensource.blogspot.com/2013/01/c-containers-that-save-memory-and-time.html
// Note, though, that this project is in no way related to the C++ B-Tree
// implementation written about there.
//
// Within this tree, each node contains a slice of items and a (possibly nil)
// slice of children. For basic numeric values or raw structs, this can cause
// efficiency differences when compared to equivalent C++ template code that
// stores values in arrays within the node:
// * Due to the overhead of storing values as interfaces (each
// value needs to be stored as the value itself, then 2 words for the
// interface pointing to that value and its type), resulting in higher
// memory use.
// * Since interfaces can point to values anywhere in memory, values are
// most likely not stored in contiguous blocks, resulting in a higher
// number of cache misses.
// These issues don't tend to matter, though, when working with strings or other
// heap-allocated structures, since C++-equivalent structures also must store
// pointers and also distribute their values across the heap.
//
// This implementation is designed to be a drop-in replacement to gollrb.LLRB
// trees, (http://github.com/petar/gollrb), an excellent and probably the most
// widely used ordered tree implementation in the Go ecosystem currently.
// Its functions, therefore, exactly mirror those of
// llrb.LLRB where possible. Unlike gollrb, though, we currently don't
// support storing multiple equivalent values.
package btree import (
"fmt"
"io"
"sort"
"strings"
"sync"
) // Item represents a single object in the tree.
type Item interface {
// Less tests whether the current item is less than the given argument.
//
// This must provide a strict weak ordering.
// If !a.Less(b) && !b.Less(a), we treat this to mean a == b (i.e. we can only
// hold one of either a or b in the tree).
Less(than Item) bool
} const (
DefaultFreeListSize =
) var (
nilItems = make(items, )
nilChildren = make(children, )
) // FreeList represents a free list of btree nodes. By default each
// BTree has its own FreeList, but multiple BTrees can share the same
// FreeList.
// Two Btrees using the same freelist are safe for concurrent write access.
type FreeList struct {
mu sync.Mutex
freelist []*node
} // NewFreeList creates a new free list.
// size is the maximum size of the returned free list.
func NewFreeList(size int) *FreeList {
return &FreeList{freelist: make([]*node, , size)}
} func (f *FreeList) newNode() (n *node) {
f.mu.Lock()
index := len(f.freelist) -
if index < {
f.mu.Unlock()
return new(node)
}
n = f.freelist[index]
f.freelist[index] = nil
f.freelist = f.freelist[:index]
f.mu.Unlock()
return
} // freeNode adds the given node to the list, returning true if it was added
// and false if it was discarded.
func (f *FreeList) freeNode(n *node) (out bool) {
f.mu.Lock()
if len(f.freelist) < cap(f.freelist) {
f.freelist = append(f.freelist, n)
out = true
}
f.mu.Unlock()
return
} // ItemIterator allows callers of Ascend* to iterate in-order over portions of
// the tree. When this function returns false, iteration will stop and the
// associated Ascend* function will immediately return.
type ItemIterator func(i Item) bool // New creates a new B-Tree with the given degree.
//
// New(2), for example, will create a 2-3-4 tree (each node contains 1-3 items
// and 2-4 children).
func New(degree int) *BTree {
return NewWithFreeList(degree, NewFreeList(DefaultFreeListSize))
} // NewWithFreeList creates a new B-Tree that uses the given node free list.
func NewWithFreeList(degree int, f *FreeList) *BTree {
if degree <= {
panic("bad degree")
}
return &BTree{
degree: degree,
cow: ©OnWriteContext{freelist: f},
}
} // items stores items in a node.
type items []Item // insertAt inserts a value into the given index, pushing all subsequent values
// forward.
func (s *items) insertAt(index int, item Item) {
*s = append(*s, nil)
if index < len(*s) {
copy((*s)[index+:], (*s)[index:])
}
(*s)[index] = item
} // removeAt removes a value at a given index, pulling all subsequent values
// back.
func (s *items) removeAt(index int) Item {
item := (*s)[index]
copy((*s)[index:], (*s)[index+:])
(*s)[len(*s)-] = nil
*s = (*s)[:len(*s)-]
return item
} // pop removes and returns the last element in the list.
func (s *items) pop() (out Item) {
index := len(*s) -
out = (*s)[index]
(*s)[index] = nil
*s = (*s)[:index]
return
} // truncate truncates this instance at index so that it contains only the
// first index items. index must be less than or equal to length.
func (s *items) truncate(index int) {
var toClear items
*s, toClear = (*s)[:index], (*s)[index:]
for len(toClear) > {
toClear = toClear[copy(toClear, nilItems):]
}
} // find returns the index where the given item should be inserted into this
// list. 'found' is true if the item already exists in the list at the given
// index.
func (s items) find(item Item) (index int, found bool) {
i := sort.Search(len(s), func(i int) bool {
return item.Less(s[i])
})
if i > && !s[i-].Less(item) {
return i - , true
}
return i, false
} // children stores child nodes in a node.
type children []*node // insertAt inserts a value into the given index, pushing all subsequent values
// forward.
func (s *children) insertAt(index int, n *node) {
*s = append(*s, nil)
if index < len(*s) {
copy((*s)[index+:], (*s)[index:])
}
(*s)[index] = n
} // removeAt removes a value at a given index, pulling all subsequent values
// back.
func (s *children) removeAt(index int) *node {
n := (*s)[index]
copy((*s)[index:], (*s)[index+:])
(*s)[len(*s)-] = nil
*s = (*s)[:len(*s)-]
return n
} // pop removes and returns the last element in the list.
func (s *children) pop() (out *node) {
index := len(*s) -
out = (*s)[index]
(*s)[index] = nil
*s = (*s)[:index]
return
} // truncate truncates this instance at index so that it contains only the
// first index children. index must be less than or equal to length.
func (s *children) truncate(index int) {
var toClear children
*s, toClear = (*s)[:index], (*s)[index:]
for len(toClear) > {
toClear = toClear[copy(toClear, nilChildren):]
}
} // node is an internal node in a tree.
//
// It must at all times maintain the invariant that either
// * len(children) == 0, len(items) unconstrained
// * len(children) == len(items) + 1
type node struct {
items items
children children
cow *copyOnWriteContext
} func (n *node) mutableFor(cow *copyOnWriteContext) *node {
if n.cow == cow {
return n
}
out := cow.newNode()
if cap(out.items) >= len(n.items) {
out.items = out.items[:len(n.items)]
} else {
out.items = make(items, len(n.items), cap(n.items))
}
copy(out.items, n.items)
// Copy children
if cap(out.children) >= len(n.children) {
out.children = out.children[:len(n.children)]
} else {
out.children = make(children, len(n.children), cap(n.children))
}
copy(out.children, n.children)
return out
} func (n *node) mutableChild(i int) *node {
c := n.children[i].mutableFor(n.cow)
n.children[i] = c
return c
} // split splits the given node at the given index. The current node shrinks,
// and this function returns the item that existed at that index and a new node
// containing all items/children after it.
func (n *node) split(i int) (Item, *node) {
item := n.items[i]
next := n.cow.newNode()
next.items = append(next.items, n.items[i+:]...)
n.items.truncate(i)
if len(n.children) > {
next.children = append(next.children, n.children[i+:]...)
n.children.truncate(i + )
}
return item, next
} // maybeSplitChild checks if a child should be split, and if so splits it.
// Returns whether or not a split occurred.
func (n *node) maybeSplitChild(i, maxItems int) bool {
if len(n.children[i].items) < maxItems {
return false
}
first := n.mutableChild(i)
item, second := first.split(maxItems / )
n.items.insertAt(i, item)
n.children.insertAt(i+, second)
return true
} // insert inserts an item into the subtree rooted at this node, making sure
// no nodes in the subtree exceed maxItems items. Should an equivalent item be
// be found/replaced by insert, it will be returned.
func (n *node) insert(item Item, maxItems int) Item {
i, found := n.items.find(item)
if found {
out := n.items[i]
n.items[i] = item
return out
}
if len(n.children) == {
n.items.insertAt(i, item)
return nil
}
if n.maybeSplitChild(i, maxItems) {
inTree := n.items[i]
switch {
case item.Less(inTree):
// no change, we want first split node
case inTree.Less(item):
i++ // we want second split node
default:
out := n.items[i]
n.items[i] = item
return out
}
}
return n.mutableChild(i).insert(item, maxItems)
} // get finds the given key in the subtree and returns it.
func (n *node) get(key Item) Item {
i, found := n.items.find(key)
if found {
return n.items[i]
} else if len(n.children) > {
return n.children[i].get(key)
}
return nil
} // min returns the first item in the subtree.
func min(n *node) Item {
if n == nil {
return nil
}
for len(n.children) > {
n = n.children[]
}
if len(n.items) == {
return nil
}
return n.items[]
} // max returns the last item in the subtree.
func max(n *node) Item {
if n == nil {
return nil
}
for len(n.children) > {
n = n.children[len(n.children)-]
}
if len(n.items) == {
return nil
}
return n.items[len(n.items)-]
} // toRemove details what item to remove in a node.remove call.
type toRemove int const (
removeItem toRemove = iota // removes the given item
removeMin // removes smallest item in the subtree
removeMax // removes largest item in the subtree
) // remove removes an item from the subtree rooted at this node.
func (n *node) remove(item Item, minItems int, typ toRemove) Item {
var i int
var found bool
switch typ {
case removeMax:
if len(n.children) == {
return n.items.pop()
}
i = len(n.items)
case removeMin:
if len(n.children) == {
return n.items.removeAt()
}
i =
case removeItem:
i, found = n.items.find(item)
if len(n.children) == {
if found {
return n.items.removeAt(i)
}
return nil
}
default:
panic("invalid type")
}
// If we get to here, we have children.
if len(n.children[i].items) <= minItems {
return n.growChildAndRemove(i, item, minItems, typ)
}
child := n.mutableChild(i)
// Either we had enough items to begin with, or we've done some
// merging/stealing, because we've got enough now and we're ready to return
// stuff.
if found {
// The item exists at index 'i', and the child we've selected can give us a
// predecessor, since if we've gotten here it's got > minItems items in it.
out := n.items[i]
// We use our special-case 'remove' call with typ=maxItem to pull the
// predecessor of item i (the rightmost leaf of our immediate left child)
// and set it into where we pulled the item from.
n.items[i] = child.remove(nil, minItems, removeMax)
return out
}
// Final recursive call. Once we're here, we know that the item isn't in this
// node and that the child is big enough to remove from.
return child.remove(item, minItems, typ)
} // growChildAndRemove grows child 'i' to make sure it's possible to remove an
// item from it while keeping it at minItems, then calls remove to actually
// remove it.
//
// Most documentation says we have to do two sets of special casing:
// 1) item is in this node
// 2) item is in child
// In both cases, we need to handle the two subcases:
// A) node has enough values that it can spare one
// B) node doesn't have enough values
// For the latter, we have to check:
// a) left sibling has node to spare
// b) right sibling has node to spare
// c) we must merge
// To simplify our code here, we handle cases #1 and #2 the same:
// If a node doesn't have enough items, we make sure it does (using a,b,c).
// We then simply redo our remove call, and the second time (regardless of
// whether we're in case 1 or 2), we'll have enough items and can guarantee
// that we hit case A.
func (n *node) growChildAndRemove(i int, item Item, minItems int, typ toRemove) Item {
if i > && len(n.children[i-].items) > minItems {
// Steal from left child
child := n.mutableChild(i)
stealFrom := n.mutableChild(i - )
stolenItem := stealFrom.items.pop()
child.items.insertAt(, n.items[i-])
n.items[i-] = stolenItem
if len(stealFrom.children) > {
child.children.insertAt(, stealFrom.children.pop())
}
} else if i < len(n.items) && len(n.children[i+].items) > minItems {
// steal from right child
child := n.mutableChild(i)
stealFrom := n.mutableChild(i + )
stolenItem := stealFrom.items.removeAt()
child.items = append(child.items, n.items[i])
n.items[i] = stolenItem
if len(stealFrom.children) > {
child.children = append(child.children, stealFrom.children.removeAt())
}
} else {
if i >= len(n.items) {
i--
}
child := n.mutableChild(i)
// merge with right child
mergeItem := n.items.removeAt(i)
mergeChild := n.children.removeAt(i + )
child.items = append(child.items, mergeItem)
child.items = append(child.items, mergeChild.items...)
child.children = append(child.children, mergeChild.children...)
n.cow.freeNode(mergeChild)
}
return n.remove(item, minItems, typ)
} type direction int const (
descend = direction(-)
ascend = direction(+)
) // iterate provides a simple method for iterating over elements in the tree.
//
// When ascending, the 'start' should be less than 'stop' and when descending,
// the 'start' should be greater than 'stop'. Setting 'includeStart' to true
// will force the iterator to include the first item when it equals 'start',
// thus creating a "greaterOrEqual" or "lessThanEqual" rather than just a
// "greaterThan" or "lessThan" queries.
func (n *node) iterate(dir direction, start, stop Item, includeStart bool, hit bool, iter ItemIterator) (bool, bool) {
var ok, found bool
var index int
switch dir {
case ascend:
if start != nil {
index, _ = n.items.find(start)
}
for i := index; i < len(n.items); i++ {
if len(n.children) > {
if hit, ok = n.children[i].iterate(dir, start, stop, includeStart, hit, iter); !ok {
return hit, false
}
}
if !includeStart && !hit && start != nil && !start.Less(n.items[i]) {
hit = true
continue
}
hit = true
if stop != nil && !n.items[i].Less(stop) {
return hit, false
}
if !iter(n.items[i]) {
return hit, false
}
}
if len(n.children) > {
if hit, ok = n.children[len(n.children)-].iterate(dir, start, stop, includeStart, hit, iter); !ok {
return hit, false
}
}
case descend:
if start != nil {
index, found = n.items.find(start)
if !found {
index = index -
}
} else {
index = len(n.items) -
}
for i := index; i >= ; i-- {
if start != nil && !n.items[i].Less(start) {
if !includeStart || hit || start.Less(n.items[i]) {
continue
}
}
if len(n.children) > {
if hit, ok = n.children[i+].iterate(dir, start, stop, includeStart, hit, iter); !ok {
return hit, false
}
}
if stop != nil && !stop.Less(n.items[i]) {
return hit, false // continue
}
hit = true
if !iter(n.items[i]) {
return hit, false
}
}
if len(n.children) > {
if hit, ok = n.children[].iterate(dir, start, stop, includeStart, hit, iter); !ok {
return hit, false
}
}
}
return hit, true
} // Used for testing/debugging purposes.
func (n *node) print(w io.Writer, level int) {
fmt.Fprintf(w, "%sNODE:%v\n", strings.Repeat(" ", level), n.items)
for _, c := range n.children {
c.print(w, level+)
}
} // BTree is an implementation of a B-Tree.
//
// BTree stores Item instances in an ordered structure, allowing easy insertion,
// removal, and iteration.
//
// Write operations are not safe for concurrent mutation by multiple
// goroutines, but Read operations are.
type BTree struct {
degree int
length int
root *node
cow *copyOnWriteContext
} // copyOnWriteContext pointers determine node ownership... a tree with a write
// context equivalent to a node's write context is allowed to modify that node.
// A tree whose write context does not match a node's is not allowed to modify
// it, and must create a new, writable copy (IE: it's a Clone).
//
// When doing any write operation, we maintain the invariant that the current
// node's context is equal to the context of the tree that requested the write.
// We do this by, before we descend into any node, creating a copy with the
// correct context if the contexts don't match.
//
// Since the node we're currently visiting on any write has the requesting
// tree's context, that node is modifiable in place. Children of that node may
// not share context, but before we descend into them, we'll make a mutable
// copy.
type copyOnWriteContext struct {
freelist *FreeList
} // Clone clones the btree, lazily. Clone should not be called concurrently,
// but the original tree (t) and the new tree (t2) can be used concurrently
// once the Clone call completes.
//
// The internal tree structure of b is marked read-only and shared between t and
// t2. Writes to both t and t2 use copy-on-write logic, creating new nodes
// whenever one of b's original nodes would have been modified. Read operations
// should have no performance degredation. Write operations for both t and t2
// will initially experience minor slow-downs caused by additional allocs and
// copies due to the aforementioned copy-on-write logic, but should converge to
// the original performance characteristics of the original tree.
func (t *BTree) Clone() (t2 *BTree) {
// Create two entirely new copy-on-write contexts.
// This operation effectively creates three trees:
// the original, shared nodes (old b.cow)
// the new b.cow nodes
// the new out.cow nodes
cow1, cow2 := *t.cow, *t.cow
out := *t
t.cow = &cow1
out.cow = &cow2
return &out
} // maxItems returns the max number of items to allow per node.
func (t *BTree) maxItems() int {
return t.degree* -
} // minItems returns the min number of items to allow per node (ignored for the
// root node).
func (t *BTree) minItems() int {
return t.degree -
} func (c *copyOnWriteContext) newNode() (n *node) {
n = c.freelist.newNode()
n.cow = c
return
} type freeType int const (
ftFreelistFull freeType = iota // node was freed (available for GC, not stored in freelist)
ftStored // node was stored in the freelist for later use
ftNotOwned // node was ignored by COW, since it's owned by another one
) // freeNode frees a node within a given COW context, if it's owned by that
// context. It returns what happened to the node (see freeType const
// documentation).
func (c *copyOnWriteContext) freeNode(n *node) freeType {
if n.cow == c {
// clear to allow GC
n.items.truncate()
n.children.truncate()
n.cow = nil
if c.freelist.freeNode(n) {
return ftStored
} else {
return ftFreelistFull
}
} else {
return ftNotOwned
}
} // ReplaceOrInsert adds the given item to the tree. If an item in the tree
// already equals the given one, it is removed from the tree and returned.
// Otherwise, nil is returned.
//
// nil cannot be added to the tree (will panic).
func (t *BTree) ReplaceOrInsert(item Item) Item {
if item == nil {
panic("nil item being added to BTree")
}
if t.root == nil {
t.root = t.cow.newNode()
t.root.items = append(t.root.items, item)
t.length++
return nil
} else {
t.root = t.root.mutableFor(t.cow)
if len(t.root.items) >= t.maxItems() {
item2, second := t.root.split(t.maxItems() / )
oldroot := t.root
t.root = t.cow.newNode()
t.root.items = append(t.root.items, item2)
t.root.children = append(t.root.children, oldroot, second)
}
}
out := t.root.insert(item, t.maxItems())
if out == nil {
t.length++
}
return out
} // Delete removes an item equal to the passed in item from the tree, returning
// it. If no such item exists, returns nil.
func (t *BTree) Delete(item Item) Item {
return t.deleteItem(item, removeItem)
} // DeleteMin removes the smallest item in the tree and returns it.
// If no such item exists, returns nil.
func (t *BTree) DeleteMin() Item {
return t.deleteItem(nil, removeMin)
} // DeleteMax removes the largest item in the tree and returns it.
// If no such item exists, returns nil.
func (t *BTree) DeleteMax() Item {
return t.deleteItem(nil, removeMax)
} func (t *BTree) deleteItem(item Item, typ toRemove) Item {
if t.root == nil || len(t.root.items) == {
return nil
}
t.root = t.root.mutableFor(t.cow)
out := t.root.remove(item, t.minItems(), typ)
if len(t.root.items) == && len(t.root.children) > {
oldroot := t.root
t.root = t.root.children[]
t.cow.freeNode(oldroot)
}
if out != nil {
t.length--
}
return out
} // AscendRange calls the iterator for every value in the tree within the range
// [greaterOrEqual, lessThan), until iterator returns false.
func (t *BTree) AscendRange(greaterOrEqual, lessThan Item, iterator ItemIterator) {
if t.root == nil {
return
}
t.root.iterate(ascend, greaterOrEqual, lessThan, true, false, iterator)
} // AscendLessThan calls the iterator for every value in the tree within the range
// [first, pivot), until iterator returns false.
func (t *BTree) AscendLessThan(pivot Item, iterator ItemIterator) {
if t.root == nil {
return
}
t.root.iterate(ascend, nil, pivot, false, false, iterator)
} // AscendGreaterOrEqual calls the iterator for every value in the tree within
// the range [pivot, last], until iterator returns false.
func (t *BTree) AscendGreaterOrEqual(pivot Item, iterator ItemIterator) {
if t.root == nil {
return
}
t.root.iterate(ascend, pivot, nil, true, false, iterator)
} // Ascend calls the iterator for every value in the tree within the range
// [first, last], until iterator returns false.
func (t *BTree) Ascend(iterator ItemIterator) {
if t.root == nil {
return
}
t.root.iterate(ascend, nil, nil, false, false, iterator)
} // DescendRange calls the iterator for every value in the tree within the range
// [lessOrEqual, greaterThan), until iterator returns false.
func (t *BTree) DescendRange(lessOrEqual, greaterThan Item, iterator ItemIterator) {
if t.root == nil {
return
}
t.root.iterate(descend, lessOrEqual, greaterThan, true, false, iterator)
} // DescendLessOrEqual calls the iterator for every value in the tree within the range
// [pivot, first], until iterator returns false.
func (t *BTree) DescendLessOrEqual(pivot Item, iterator ItemIterator) {
if t.root == nil {
return
}
t.root.iterate(descend, pivot, nil, true, false, iterator)
} // DescendGreaterThan calls the iterator for every value in the tree within
// the range (pivot, last], until iterator returns false.
func (t *BTree) DescendGreaterThan(pivot Item, iterator ItemIterator) {
if t.root == nil {
return
}
t.root.iterate(descend, nil, pivot, false, false, iterator)
} // Descend calls the iterator for every value in the tree within the range
// [last, first], until iterator returns false.
func (t *BTree) Descend(iterator ItemIterator) {
if t.root == nil {
return
}
t.root.iterate(descend, nil, nil, false, false, iterator)
} // Get looks for the key item in the tree, returning it. It returns nil if
// unable to find that item.
func (t *BTree) Get(key Item) Item {
if t.root == nil {
return nil
}
return t.root.get(key)
} // Min returns the smallest item in the tree, or nil if the tree is empty.
func (t *BTree) Min() Item {
return min(t.root)
} // Max returns the largest item in the tree, or nil if the tree is empty.
func (t *BTree) Max() Item {
return max(t.root)
} // Has returns true if the given key is in the tree.
func (t *BTree) Has(key Item) bool {
return t.Get(key) != nil
} // Len returns the number of items currently in the tree.
func (t *BTree) Len() int {
return t.length
} // Clear removes all items from the btree. If addNodesToFreelist is true,
// t's nodes are added to its freelist as part of this call, until the freelist
// is full. Otherwise, the root node is simply dereferenced and the subtree
// left to Go's normal GC processes.
//
// This can be much faster
// than calling Delete on all elements, because that requires finding/removing
// each element in the tree and updating the tree accordingly. It also is
// somewhat faster than creating a new tree to replace the old one, because
// nodes from the old tree are reclaimed into the freelist for use by the new
// one, instead of being lost to the garbage collector.
//
// This call takes:
// O(1): when addNodesToFreelist is false, this is a single operation.
// O(1): when the freelist is already full, it breaks out immediately
// O(freelist size): when the freelist is empty and the nodes are all owned
// by this tree, nodes are added to the freelist until full.
// O(tree size): when all nodes are owned by another tree, all nodes are
// iterated over looking for nodes to add to the freelist, and due to
// ownership, none are.
func (t *BTree) Clear(addNodesToFreelist bool) {
if t.root != nil && addNodesToFreelist {
t.root.reset(t.cow)
}
t.root, t.length = nil,
} // reset returns a subtree to the freelist. It breaks out immediately if the
// freelist is full, since the only benefit of iterating is to fill that
// freelist up. Returns true if parent reset call should continue.
func (n *node) reset(c *copyOnWriteContext) bool {
for _, child := range n.children {
if !child.reset(c) {
return false
}
}
return c.freeNode(n) != ftFreelistFull
} // Int implements the Item interface for integers.
type Int int // Less returns true if int(a) < int(b).
func (a Int) Less(b Item) bool {
return a < b.(Int)
}
btree.go
谷歌开源的一个BTREE实现 Go语言的更多相关文章
- Netflix 开源 Polynote:对标 Jupyter,一个笔记本运行多种语言
谈到数据科学领域的开发工具,Jupyter 无疑是非常知名的一种.它具有灵活高效的特点,非常适合进行开发.调试.分享和教学.近日,Netflix(奈飞)居然也玩起了跨界,他们开源了一个名为 Polyn ...
- 谷歌开源项目Google Preview Image Extractor(PIEX) (附上完整demo代码)
前天偶然看到谷歌开源项目中有一个近乎无人问津的项目Google Preview Image Extractor(PIEX) . 项目地址: https://github.com/google/piex ...
- 利用谷歌开源工具cAdvisor 结合influxdb存储+Grafana前端展示进行Docker容器的监控
一.Docker 监控方式 1.利用docker 的 docker stats API 命令: docker stats [容器ID/容器名称] [root@docker ~]# docker sta ...
- 谷歌开源图片压缩算法Guetzli实测体验报告
谷歌大神又出开源新技术啦,这次是对JPEG格式的图片采用全新算法重新编码,输出的图片还是JPEG但是图片大小明显缩小,而质量不但没有损失,甚至还更加优化,速速来体验一把. 一.环境安装 下载谷歌开源软 ...
- 谷歌开源的TensorFlow Object Detection API视频物体识别系统实现教程
视频中的物体识别 摘要 物体识别(Object Recognition)在计算机视觉领域里指的是在一张图像或一组视频序列中找到给定的物体.本文主要是利用谷歌开源TensorFlow Object De ...
- 谷歌开源漏洞跟踪工具 Monorail 存在跨站点搜索漏洞
一名安全研究员表示,在谷歌开源漏洞跟踪工具 Monorail 中找到一个漏洞,可被用于执行跨站点搜索 (XS-Search) 攻击. Monorail 用于检查和 Chromium 相关项目中的问题, ...
- 分享:写了一个 java 调用 C语言 开发的动态库的范例
分享:写了一个 java 调用 C语言 开发的动态库的范例 cfunction.h 代码#pragma once#ifdef __cplusplusextern "C" {#e ...
- 研究实验1_搭建一个精简的C语言开发环境(包含部分经典的前言)
综合研究: 在这部分内容中,将启示我们如何进行独立研究和深度思考(一定要注意这一点,相应的调整自己的学习思想).同时使我们: (1)认识到汇编语言对于深入理解其他领域知识的 ...
- 《C语言入门1.2.3—一个老鸟的C语言学习心得》—清华大学出版社炮制的又一本劣书及伪书
<C语言入门1.2.3—一个老鸟的C语言学习心得>—清华大学出版社炮制的又一本劣书及伪书 [薛非评] 区区15页,有80多个错误. 最严重的有: 通篇完全是C++代码,根本不是C语言代码. ...
随机推荐
- Lucene的基本使用
1.了解搜索技术 2.搜索引擎的原理 索引:类似于书的目录 3.实现搜索技术的方式 方式1:数据库搜索 利用SQL语句进行模糊搜索: select * from items where title l ...
- marathon 测试
marathon 初步使用 关闭selinux setenforce 0 Marathon之应用篇 先来了解一下 Marathon 是怎么布署decker的 json shell.json { } ...
- Python-实列
"""题目:有四个数字:1.2.3.4,能组成多少个互不相同且无重复数字的三位数?各是多少? 程序分析:可填在百位.十位.个位的数字都是1.2.3.4.组成所有的排列后再 ...
- jenkins-1
1 下载jenkins,https://jenkins.io/download/, 我在此处用的是war的的形式启动的,配置tomact的server.xml,如果是一个主机多个tomact的话还要编 ...
- 【Linux】【Jenkins】系统配置报反向代理设置有误问题的解决方案
1.如图所示: 2.点击更多信息,查看解决办法: https://wiki.jenkins-ci.org/display/JENKINS/Jenkins+says+my+reverse+proxy+s ...
- C# 操作符 << 与 >>
1.<< 左移操作符: 左移操作符,将第一个操作数向左移动第二个操作数指定的位数,空出的位置补0.左移相当于乘. 左移一位相当于乘2;左移两位相当于乘4;左移三位相当于乘8. 如:x< ...
- 深入理解Servlet原理
Servlet介绍: 1. 如何返回一个网页: a. 静态网页 >新闻页.百度百科 >服务器保存一份HTML,直接返回给浏览器即可 b. 动态网页 >淘宝.QQ空间.微博 >服 ...
- leetcode55
bool canJump(vector<int>& nums) { ]; ; i < nums.size() && reach >= i; i++) { ...
- CentOS内网机器利用iptables共享公网IP上网
公司有个业务是2B的以及日活不大,所以两台服务器搞定,一个6M EIP.两台机器都是CentOS7系统EIP为 xxx.xxx.xxx.xxx绑在 内网ip为 172.18.30.175的服务器上,内 ...
- 深度学习中,使用regularization正则化(weight_decay)的好处,loss=nan
刚开始训练一个模型,自己就直接用了,而且感觉训练的数据量也挺大的,因此就没有使用正则化, 可能用的少的原因,我也就不用了,后面,训练到一定程度,accuracy不上升,loss不下降,老是出现loss ...