简单来说就是分类的类别有多个,不再是二分,比如根据某些特征,什么温度、湿度、空气流动情况来预测天气,天气的label不能说是好天气和坏天气两种,而是分晴天、雨天、阴天,雪天等等,对于决策树或者从计算机的本质上来说,二分,0或者1是本质,计算机对于二分才是擅长的,那么接下来就有两种分类方法,一种是按照one vs rest

(晴天,(雨天、阴天、雪天)) ①

(雨天,(阴天、晴天、雪天)) ②

(阴天,(晴天、雨天、雪天)) ③

(雪天,(阴天、晴天、雨天)) ④

一种是按照one vs one

(晴天、雨天) ①

(晴天、阴天) ②

(晴天、雪天) ③

(雨天、阴天) ④

(雨天、雪天) ⑤

(阴天、雪天) ⑥

当我们得到测试数据套用one vs rest的model得到四种天气的概率,则四个概率中最大的就作为最终的预测结果,如

①:晴天=85%,非晴天=15%

②:雨天=75%,非雨天=25%

③:阴天=60%,非阴天=30%

④:雪天=5%,非雪天=95%

那么晴天的概率最大,预测为晴天;

one vs one 则是投票,出现次数最多的作为最终的预测结果,如:

①:晴天

②:阴天

③:雪天

④:阴天

⑤:雪天

⑥:阴天

因为阴天出现三次,次数是最多的,所以预测为阴天。

参考来自网络以下内容:

One-vs-Rest算法将一个给定的二分类算法有效地扩展到多分类问题应用中,也叫做“One-vs-All.”算法。OneVsRest是一个Estimator。它采用一个基础的Classifier然后对于k个类别分别创建二分类问题。类别i的二分类分类器用来预测类别为i还是不为i,即将i类和其他类别区分开来。最后,通过依次对k个二分类分类器进行评估,取置信最高的分类器的标签作为i类别的标签。

1)one vs rest。 
假如我有四类要划分(也就是4个Label),他们是A、B、C、D。于是我在抽取训练集的时候,分别抽取A所对应的向量作为正集,B,C,D所对应的向量作为负集;B所对应的向量作为正集,A,C,D所对应的向量作为负集;C所对应的向量作为正集,A,B,D所对应的向量作为负集;D所对应的向量作为正集,A,B,C所对应的向量作为负集,这四个训练集分别进行训练,然后的得到四个训练结果文件,在测试的时候,把对应的测试向量分别利用这四个训练结果文件进行测试,最后每个测试都有一个结果f1(x),f2(x),f3(x),f4(x).于是最终的结果便是这四个值中最大的一个。
2)pairwise。 
还是假设有四类A,B,C,D四类。在训练的时候我选择A,B; A,C; A,D; B,C; B,D;C,D所对应的向量作为训练集,然后得到六个训练结果,在测试的时候,把对应的向量分别对六个结果进行测试,然后采取投票形式,最后得到一组结果。

针对多类问题的分类中,具体讲有两种,即multiclass classification和multilabel classification。multiclass是指分类任务中包含不止一个类别时,每条数据仅仅对应其中一个类别,不会对应多个类别。multilabel是指分类任务中不止一个分类时,每条数据可能对应不止一个类别标签,例如一条新闻,可以被划分到多个板块。

无论是multiclass,还是multilabel,做分类时都有两种策略,一个是one-vs-​the-rest(one-vs-all),一个是one-vs-one。这个在之前的SVM介绍中(http://blog.sina.com.cn/s/blog_7103b28a0102w07f.html)也提到过。

在one-vs-all策略中,假设有n个类别,那么就会建立n个二项分类器,每个分类器针对其中一个类别和剩余类别进行分类。进行预测时,利用这n个二项分类器进行分类,得到数据属于当前类的概率,选择其中概率最大的一个类别作为最终的预测结果。

在one-vs-one策略中,同样假设有n个类别,则会针对两两类别建立二项分类器,得到k=n*(n-1)/2个分类器。对新数据进行分类时,依次使用这k个分类器进行分类,每次分类相当于一次投票,分类结果是哪个就相当于对哪个类投了一票。在使用全部k个分类器进行分类后,相当于进行了k次投票,选择得票最多的那个类作为最终分类结果​。

转载 : https://blog.csdn.net/lhui798/article/details/51035834、 https://blog.csdn.net/liulingyuan6/article/details/53436386、 http://blog.sina.com.cn/s/blog_7103b28a0102w42v.html

随机推荐

  1. .NET EntityFrameworkCore.DbUpdateException 错误

    Microsoft.EntityFrameworkCore.DbUpdateException: An error occurred while updating the entries. See t ...

  2. Selenium IDE 基本概念

    要学会Selenium不难,难的是首先你懂不懂测试.没有测试的基础知识,没有对测试理论的实践和认知,没有对测试领域的情感和钻研精神,学会了Selenium这个工具对事情也没有实际帮助. 我是一个技术思 ...

  3. go语言调用append之后是否重新分配内存?

    查看tidb源代码:::util/charset/charset.go,下面有段代码: // GetAllCharsets gets all charset descriptions in the l ...

  4. 208道最常见的Java面试题整理(面试必备)

    适宜阅读人群 需要面试的初/中/高级 java 程序员 想要查漏补缺的人 想要不断完善和扩充自己 java 技术栈的人 java 面试官 具体面试题 下面一起来看 208 道面试题,具体的内容. 一. ...

  5. 【译】Apache Kafka支持单集群20万分区

    之前网上关于确定Kafka分区数的博客多多少少都源自于饶军大神的文章,如今他带来了这方面的第二篇文章,特此翻译一下,记录一下其中的要点. 原贴地址: https://www.confluent.io/ ...

  6. 安装 RabbitMQ

    Ubuntu 16.04 安装 RabbitMQ #1 更新 $ sudo apt-get update $ sudo apt-get upgrade #2 安装Erlang $ cd /tmp $ ...

  7. Nginx、haproxy反向代理设置

    Nginx反向代理配置: #user nobody; worker_processes ; events { worker_connections ; } http { include mime.ty ...

  8. padding 和 float属性

    padding = {上内,右内,下内,左内} 内边距 padding:"10, 5,15,20" float = "true"  控件固定住.

  9. 伪分布式hadoop启动后jps查不到namenode的解决办法

    启动过程没有发现错误,但是jps查看进程时,发现少了NameNode,而DataNode却存在: 原因: 是端口9000已经被占用,解决办法有两个, 第一种:查找占用端口的进程,kill掉它. had ...

  10. Dubbo 分布式服务框架入门

    要想了解 Dubbo 是什么,我们不防先了解它有什么用.使用场景:比如我想开发一个网上商城项目,这个网上商城呢,比较复杂,分为 pc 端 web 管理后台,微信端销售公众号,那么我们分成四个项目,pc ...