Task

题目连接:

https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2886

Description

In most recipes, certain tasks have to be done before others. For each task, if we are given a list of

other tasks that it depends on, then it is relatively straightforward to come up with a schedule of tasks

that satisfies the dependencies and produces a stunning dish. Many of us know that this can be solved

by some algorithm called toplogical sort.

But life is not so easy sometimes. For example, here is a recipe for making pizza dough:

  1. Mix the yeast with warm water, wait for 5 to 10 minutes.
  2. Mix the the remaining ingredients 7 to 9 minutes.
  3. Mix the yeast and the remaining ingredients together for 10 to 15 minutes.
  4. Wait 90 to 120 minutes for the dough to rise.
  5. Punch the dough and let it rest for 10 to 15 minutes.
  6. Roll the dough.

    In this case, tasks 1 and 2 may be scheduled after the first minute (we always spend the first minute

    to read the recipe and come up with a plan). The earliest task 3 may be started is at 8 minutes, and

    task 4 may start at 18 minutes after the start, and so on. This recipe is relatively simple, but if some

    tasks have many dependent tasks then scheduling can become unmanageable. Sometimes, the recipe

    may in fact be impossible to execute.

    For example, consider the following abstract recipe:
  7. task 1
  8. after task 1 but within 2 minutes of it, do task 2
  9. at least 3 minutes after task 2 but within 2 minutes of task 1, do task 3

    In this problem, you are given a number of tasks. Some tasks are related to another based on their

    starting times. You are asked to assign a starting time to each task to satisfy all constraints if possible,

    or report that no valid schedule is possible.

Input

The input consists of a number of cases. The first line of each case gives the number of tasks n

(1 ≤ n ≤ 100). This is followed by a line containing a non-negative integer m giving the number of

constraints. Each of the next m lines specify a constraint. The two possible forms of constraints are:

task i starts at least A minutes later than task j

task i starts within A minutes of the starting time of task j

where i and j are the task numbers of two different tasks (1 ≤ i, j ≤ n), and A is a non-negative integer

(A ≤ 150). The first form states that task i must start at least A minutes later than the start time of

task j. The second form states that task i must start no earlier than task j, and within A minutes of

the starting time of task j. There may be multiple constraints involving the same pair of tasks.

Note that at least and within include the end points (i.e. if task 1 starts at 1 minute and task 2

starts at 4 minutes, then task 2 starts at least 3 minutes later than task 1, and within 3 minutes of the

starting time of task 1).

The input is terminated by n = 0.

Output

For each case, output a single line containing the starting times of task 1 through task n separated by a

single space. Each starting time should specify the minute at which the task starts. The starting time

of each task should be positive and less than 1000000. There may be many possible schedules, and any

valid schedule will be accepted. If no valid schedule is possible, print ‘Impossible.’ on a line instead.

Sample Input

6

10

task 3 starts at least 5 minutes later than task 1

task 3 starts within 10 minutes of the starting time of task 1

task 3 starts at least 7 minutes later than task 2

task 3 starts within 9 minutes of the starting time of task 2

task 4 starts at least 10 minutes later than task 3

task 4 starts within 15 minutes of the starting time of task 3

task 5 starts at least 90 minutes later than task 4

task 5 starts within 120 minutes of the starting time of task 4

task 6 starts at least 10 minutes later than task 5

task 6 starts within 15 minutes of the starting time of task 5

3

4

task 2 starts at least 0 minutes later than task 1

task 2 starts within 2 minutes of the starting time of task 1

task 3 starts at least 3 minutes later than task 2

task 3 starts within 2 minutes of the starting time of task 1

0

Sample Output

3 1 8 18 108 118

Impossible.

Hint

题意

给你n个变量,然后m组描述:

每组描述A,B,C,

要么是A比B至少大C

要么是A超过B最多C

然后输出一组合法解。

题解:

拆开看,描述其实是:

A-B>=C

B-A>=-C,A-B>=0

根据这个描述建立差分约束,没有负环即有解。

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn = 105;
vector<int> E1[maxn];
vector<int> V1[maxn];
int vis[maxn];
int n,m,d[maxn];
int spfa(int x){
queue<int> Q;
Q.push(x);
d[x]=0;
vis[x]=1;
int T = 0;
while(!Q.empty()){
x=Q.front();
Q.pop();
T++;
if(T>10000)return 0;
for(int i=0;i<E1[x].size();i++){
int v=E1[x][i];
if(d[v]>d[x]+V1[x][i]){
d[v]=d[x]+V1[x][i];
vis[v]=1;
Q.push(v);
}
}
}
return 1;
}
int main(){
while(scanf("%d",&n)!=EOF){
if(n==0)break;
memset(vis,0,sizeof(vis));
scanf("%d",&m);
for(int i=0;i<maxn;i++)
E1[i].clear(),V1[i].clear();
for(int i=0;i<m;i++){
int A,B,C;
string s1;
//task i starts at least A minutes later than task j
//task i starts within A minutes of the starting time of task j
cin>>s1;
scanf("%d",&A);
cin>>s1;
string s;
cin>>s;
if(s[0]=='a'){
cin>>s1;
scanf("%d",&B);
for(int i=0;i<4;i++)
cin>>s1;
scanf("%d",&C);
E1[A].push_back(C);
V1[A].push_back(-B);
E1[A].push_back(C);
V1[A].push_back(0);
}else{
scanf("%d",&B);
for(int i=0;i<7;i++)
cin>>s1;
scanf("%d",&C);
E1[C].push_back(A);
V1[C].push_back(B);
E1[A].push_back(C);
V1[A].push_back(0);
}
}
for(int i=0;i<maxn;i++)
d[i]=1e9;
int flag=1;
for(int i=1;i<=n;i++){
if(!vis[i]){
if(spfa(i)==0){
flag=0;
break;
}
}
}
if(flag==0){
printf("Impossible.\n");
continue;
}
for(int i=1;i<=n;i++){
if(i==1)printf("%d",d[i]+1);
else printf(" %d",d[i]+1);
}
printf("\n");
}
}

UVALive - 4885 Task 差分约束的更多相关文章

  1. 【差分约束系统】【spfa】UVALive - 4885 - Task

    差分约束系统讲解看这里:http://blog.csdn.net/xuezhongfenfei/article/details/8685313 模板题,不多说.要注意的一点是!!!对于带有within ...

  2. UVALive 5532 King(差分约束,spfa)

    题意:假设一个序列S有n个元素,现在有一堆约束,限制在某些连续子序列之和上,分别有符号>和<.问序列S是否存在?(看题意都看了半小时了!) 注意所给的形式是(a,b,c,d),表示:区间之 ...

  3. 【拓扑排序或差分约束】Guess UVALive - 4255

    题目链接:https://cn.vjudge.net/contest/209473#problem/B 题目大意:对于n个数字,给出sum[j]-sum[i](sum表示前缀和)的符号(正负零),求一 ...

  4. Is the Information Reliable?(差分约束)

    Description The galaxy war between the Empire Draco and the Commonwealth of Zibu broke out 3 years a ...

  5. Candies-POJ3159差分约束

    Time Limit: 1500MS Memory Limit: 131072K Description During the kindergarten days, flymouse was the ...

  6. poj3159 差分约束 spfa

    //Accepted 2692 KB 1282 ms //差分约束 -->最短路 //TLE到死,加了输入挂,手写queue #include <cstdio> #include & ...

  7. ZOJ 2770火烧连营——差分约束

    偶尔做了一下差分约束. 题目大意:给出n个军营,每个军营最多有ci个士兵,且[ai,bi]之间至少有ki个士兵,问最少有多少士兵. ---------------------------------- ...

  8. POJ 2983 Is the Information Reliable? 差分约束

    裸差分约束. //#pragma comment(linker, "/STACK:1024000000,1024000000") #include<cstdio> #i ...

  9. 2014 Super Training #6 B Launching the Spacecraft --差分约束

    原题:ZOJ 3668 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3668 典型差分约束题. 将sum[0] ~ sum ...

随机推荐

  1. Redis托管Session

    一:redis托管session主要是为了不同域之间共享session.Asp.net提供了四种处理Session的方法 1.  InProc模式 这是ASP.NET默认的Session管理模式,在应 ...

  2. 安装淘宝npm(cnpm)

    https://www.cnblogs.com/yominhi/p/7039795.html http://npm.taobao.org/ 初始化一个 mpvue 项目 现代前端开发框架和环境都是需要 ...

  3. 使用shell脚本定时采集日志数据到hdfs分布式文件系统

    1.首先对linux操作系统的crontab命令进行熟悉和了解: .crond是linux下用来周期性的执行某种任务或等待处理某些事件的一个守护进程,与windows下的计划任务类似,当安装完成操作系 ...

  4. thinkphp5分页传参

    $name = input('get.searchKey/s'); if($name != ""){ $this->assign('searchKey', $name); $ ...

  5. chkconfig命令 centos 开机启动命令

    .利用 chkconfig 来配置启动级别 在CentOS或者RedHat其他系统下,如果是后面安装的服务,如httpd.mysqld.postfix等,安装后系统默认不会自动启动的.就算手动执行 / ...

  6. Centos6.5安装Apache ab性能测试工具

    ab简洁: ab是apache自带的压力测试工具,ab是apachebench命令的缩写. ab不仅可以对apache服务器进行网站访问压力测试,也可以对或其它类型的服务器进行压力测试. ab是一个h ...

  7. ELK5.3日志分析平台&部署

    https://www.cnblogs.com/xing901022/p/6030296.html ELK简介: Elasticsearch是个开源分布式搜索引擎,它的特点有:分布式,零配置,自动发现 ...

  8. net core体系-web应用程序-4asp.net core2.0 项目实战(1)-9项目各种全局帮助类

    本文目录 1.  前沿2.CacheHelper基于Microsoft.Extensions.Caching.Memory封装3.XmlHelper快速操作xml文档4.SerializationHe ...

  9. 伪分布式hadoop1.1.2和hbase0.94.11配置

    Hadoop 1.1.2 和Hbase 0.94.11版本配置 测试时ip  172.19.32.128 这个版本需要把/etc/hosts的aa-vm改成127.0.0.1,也就是和localhos ...

  10. BZOJ1066 [SCOI2007]蜥蜴 网络流 最大流 SAP

    由于本题和HDU2732几乎相同,所以读者可以看-> HDU2732题解传送门: http://www.cnblogs.com/zhouzhendong/p/8362002.html