UVALive - 4885 Task 差分约束
Task
题目连接:
Description
In most recipes, certain tasks have to be done before others. For each task, if we are given a list of
other tasks that it depends on, then it is relatively straightforward to come up with a schedule of tasks
that satisfies the dependencies and produces a stunning dish. Many of us know that this can be solved
by some algorithm called toplogical sort.
But life is not so easy sometimes. For example, here is a recipe for making pizza dough:
- Mix the yeast with warm water, wait for 5 to 10 minutes.
- Mix the the remaining ingredients 7 to 9 minutes.
- Mix the yeast and the remaining ingredients together for 10 to 15 minutes.
- Wait 90 to 120 minutes for the dough to rise.
- Punch the dough and let it rest for 10 to 15 minutes.
- Roll the dough.
In this case, tasks 1 and 2 may be scheduled after the first minute (we always spend the first minute
to read the recipe and come up with a plan). The earliest task 3 may be started is at 8 minutes, and
task 4 may start at 18 minutes after the start, and so on. This recipe is relatively simple, but if some
tasks have many dependent tasks then scheduling can become unmanageable. Sometimes, the recipe
may in fact be impossible to execute.
For example, consider the following abstract recipe: - task 1
- after task 1 but within 2 minutes of it, do task 2
- at least 3 minutes after task 2 but within 2 minutes of task 1, do task 3
In this problem, you are given a number of tasks. Some tasks are related to another based on their
starting times. You are asked to assign a starting time to each task to satisfy all constraints if possible,
or report that no valid schedule is possible.
Input
The input consists of a number of cases. The first line of each case gives the number of tasks n
(1 ≤ n ≤ 100). This is followed by a line containing a non-negative integer m giving the number of
constraints. Each of the next m lines specify a constraint. The two possible forms of constraints are:
task i starts at least A minutes later than task j
task i starts within A minutes of the starting time of task j
where i and j are the task numbers of two different tasks (1 ≤ i, j ≤ n), and A is a non-negative integer
(A ≤ 150). The first form states that task i must start at least A minutes later than the start time of
task j. The second form states that task i must start no earlier than task j, and within A minutes of
the starting time of task j. There may be multiple constraints involving the same pair of tasks.
Note that at least and within include the end points (i.e. if task 1 starts at 1 minute and task 2
starts at 4 minutes, then task 2 starts at least 3 minutes later than task 1, and within 3 minutes of the
starting time of task 1).
The input is terminated by n = 0.
Output
For each case, output a single line containing the starting times of task 1 through task n separated by a
single space. Each starting time should specify the minute at which the task starts. The starting time
of each task should be positive and less than 1000000. There may be many possible schedules, and any
valid schedule will be accepted. If no valid schedule is possible, print ‘Impossible.’ on a line instead.
Sample Input
6
10
task 3 starts at least 5 minutes later than task 1
task 3 starts within 10 minutes of the starting time of task 1
task 3 starts at least 7 minutes later than task 2
task 3 starts within 9 minutes of the starting time of task 2
task 4 starts at least 10 minutes later than task 3
task 4 starts within 15 minutes of the starting time of task 3
task 5 starts at least 90 minutes later than task 4
task 5 starts within 120 minutes of the starting time of task 4
task 6 starts at least 10 minutes later than task 5
task 6 starts within 15 minutes of the starting time of task 5
3
4
task 2 starts at least 0 minutes later than task 1
task 2 starts within 2 minutes of the starting time of task 1
task 3 starts at least 3 minutes later than task 2
task 3 starts within 2 minutes of the starting time of task 1
0
Sample Output
3 1 8 18 108 118
Impossible.
Hint
题意
给你n个变量,然后m组描述:
每组描述A,B,C,
要么是A比B至少大C
要么是A超过B最多C
然后输出一组合法解。
题解:
拆开看,描述其实是:
A-B>=C
B-A>=-C,A-B>=0
根据这个描述建立差分约束,没有负环即有解。
代码
#include<bits/stdc++.h>
using namespace std;
const int maxn = 105;
vector<int> E1[maxn];
vector<int> V1[maxn];
int vis[maxn];
int n,m,d[maxn];
int spfa(int x){
queue<int> Q;
Q.push(x);
d[x]=0;
vis[x]=1;
int T = 0;
while(!Q.empty()){
x=Q.front();
Q.pop();
T++;
if(T>10000)return 0;
for(int i=0;i<E1[x].size();i++){
int v=E1[x][i];
if(d[v]>d[x]+V1[x][i]){
d[v]=d[x]+V1[x][i];
vis[v]=1;
Q.push(v);
}
}
}
return 1;
}
int main(){
while(scanf("%d",&n)!=EOF){
if(n==0)break;
memset(vis,0,sizeof(vis));
scanf("%d",&m);
for(int i=0;i<maxn;i++)
E1[i].clear(),V1[i].clear();
for(int i=0;i<m;i++){
int A,B,C;
string s1;
//task i starts at least A minutes later than task j
//task i starts within A minutes of the starting time of task j
cin>>s1;
scanf("%d",&A);
cin>>s1;
string s;
cin>>s;
if(s[0]=='a'){
cin>>s1;
scanf("%d",&B);
for(int i=0;i<4;i++)
cin>>s1;
scanf("%d",&C);
E1[A].push_back(C);
V1[A].push_back(-B);
E1[A].push_back(C);
V1[A].push_back(0);
}else{
scanf("%d",&B);
for(int i=0;i<7;i++)
cin>>s1;
scanf("%d",&C);
E1[C].push_back(A);
V1[C].push_back(B);
E1[A].push_back(C);
V1[A].push_back(0);
}
}
for(int i=0;i<maxn;i++)
d[i]=1e9;
int flag=1;
for(int i=1;i<=n;i++){
if(!vis[i]){
if(spfa(i)==0){
flag=0;
break;
}
}
}
if(flag==0){
printf("Impossible.\n");
continue;
}
for(int i=1;i<=n;i++){
if(i==1)printf("%d",d[i]+1);
else printf(" %d",d[i]+1);
}
printf("\n");
}
}
UVALive - 4885 Task 差分约束的更多相关文章
- 【差分约束系统】【spfa】UVALive - 4885 - Task
差分约束系统讲解看这里:http://blog.csdn.net/xuezhongfenfei/article/details/8685313 模板题,不多说.要注意的一点是!!!对于带有within ...
- UVALive 5532 King(差分约束,spfa)
题意:假设一个序列S有n个元素,现在有一堆约束,限制在某些连续子序列之和上,分别有符号>和<.问序列S是否存在?(看题意都看了半小时了!) 注意所给的形式是(a,b,c,d),表示:区间之 ...
- 【拓扑排序或差分约束】Guess UVALive - 4255
题目链接:https://cn.vjudge.net/contest/209473#problem/B 题目大意:对于n个数字,给出sum[j]-sum[i](sum表示前缀和)的符号(正负零),求一 ...
- Is the Information Reliable?(差分约束)
Description The galaxy war between the Empire Draco and the Commonwealth of Zibu broke out 3 years a ...
- Candies-POJ3159差分约束
Time Limit: 1500MS Memory Limit: 131072K Description During the kindergarten days, flymouse was the ...
- poj3159 差分约束 spfa
//Accepted 2692 KB 1282 ms //差分约束 -->最短路 //TLE到死,加了输入挂,手写queue #include <cstdio> #include & ...
- ZOJ 2770火烧连营——差分约束
偶尔做了一下差分约束. 题目大意:给出n个军营,每个军营最多有ci个士兵,且[ai,bi]之间至少有ki个士兵,问最少有多少士兵. ---------------------------------- ...
- POJ 2983 Is the Information Reliable? 差分约束
裸差分约束. //#pragma comment(linker, "/STACK:1024000000,1024000000") #include<cstdio> #i ...
- 2014 Super Training #6 B Launching the Spacecraft --差分约束
原题:ZOJ 3668 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3668 典型差分约束题. 将sum[0] ~ sum ...
随机推荐
- python---实现多个有序列表的合并
我觉得不用抄书上的代码. 遇到实现问题,应该结合python本身的功能去解决. 比如,当合并有序列表时,为什么一定要一项一项比较,而不是使用list的sort函数呢? # coding = utf-8 ...
- RabbitMQ三种Exchange模式(fanout,direct,topic)的性能比较
RabbitMQ中,所有生产者提交的消息都由Exchange来接受,然后Exchange按照特定的策略转发到Queue进行存储 RabbitMQ提供了四种Exchange:fanout,direct, ...
- ArcGIS 10开发迁移策略(待续)
1.更改 ESRI.ArcGIS.ADF 程序集 ArcGIS 10 中, ADF 程序集中的功能被分散到不同的程序集中,如果将 ArcGIS 9.3 下 开发的自定义组件迁移到 ArcGIS 10 ...
- mysql基础理论
第一节数据库管理系统概述 在www.db-engines.com/en/ 这个网站中可以看到对数据库的排名 数据库分为: 关系型数据库: mysql------mariaDB oracle 非关系型数 ...
- Codeforces 915G Coprime Arrays 莫比乌斯反演 (看题解)
Coprime Arrays 啊,我感觉我更本不会莫比乌斯啊啊啊, 感觉每次都学不会, 我好菜啊. #include<bits/stdc++.h> #define LL long long ...
- docker inspect命令
docker inspect -f {{.NetworkSettings.Networks.crawling_pro.NetworkID}} crawling_internationalmacro_p ...
- hive中使用union出现异常数据
select * from tbl where id=2 union select * from tbl where id =1 如果hive使用union这么查询的时候,我们会发现数据变乱了. 解决 ...
- 016 pickle
英文也是泡菜的意思. 学完了,还是感觉这个模块是蛮不错的,对多数据保存到文件中,然后在使用的时候,再读取出来,让程序闲的更加优雅,简洁. 一:介绍 1.为什么使用 在开篇已经介绍了,但是我这里粘贴一下 ...
- 记Ubuntu Mongodb 和 Mysql的安装与使用
安装mongodb 参考链接 https://www.cnblogs.com/shileima/p/7823434.html https://blog.csdn.net/xlengji/article ...
- 20165235 学习基础和C语言基础调查
20165235 学习基础和C语言基础调查 首先第一个问题:你有什么技能比大多人(超过90%以上)更好?感觉很难回答这种问题,其实我对很多东西挺感兴趣的,如果非要拿出一种比较突出的技能的话我感觉就是象 ...