[HNOI2012]射箭(计算几何)
- 设抛物线方程\(y = ax^2 + bx\), 那么对于一个靶子\((x_i,y_{down},y_{up})\)我们需要满足的条件就是
- \(\frac{y_{down}}{x_i} \leq ax_i + b \leq \frac{y_{up}}{x_i}\), 实际上可以看做二维平面上的一个半平面,
- 然后我们二分能打到的最远距离, 我们只需要求出这些半平面是否有交就好了
- 当然我们要把ab的合法范围勾选出来, 满足, a < 0, b > 0
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
#include<cmath>
#include<iostream>
#define ll long long
#define double long double
#define M 600010
#define mmp make_pair
const double inf = pow(2, 60), eps = 1e-12;
using namespace std;
int read() {
int nm = 0, f = 1;
char c = getchar();
for(; !isdigit(c); c = getchar()) if(c == '-') f = -1;
for(; isdigit(c); c = getchar()) nm = nm * 10 + c - '0';
return nm * f;
}
struct Vec {
double x, y;
Vec () {}
Vec(double a, double b) {
x = a, y = b;
}
Vec operator + (Vec b) {
return Vec(x + b.x, y + b.y);
}
Vec operator - (Vec b) {
return Vec(x - b.x, y - b.y);
}
Vec operator *(double a) {
return Vec(x * a, y * a);
}
double operator ^ (Vec a) {
return x * a.y - y * a.x;
}
} k[M];
struct Line {
Vec p, v;
double k;
int id;
Line() {}
Line(Vec a, Vec b, int c) {
p = a, v = b - a, k = atan2(v.y, v.x), id = c;
}
bool operator < (const Line &b) const
{
return this->k < b.k;
}
bool right(Vec a) {
return (v ^ (a - p)) < -eps;
}
friend Vec cross(Line a, Line b) {
return a.p + a.v * ((b.v ^ (b.p - a.p)) / (b.v ^ a.v));
}
} a[M], q[M];
int tp = 0, n;
bool check(int mid) {
int h = 0, t = 0, i = 1;
while(a[i].id > mid) i++;
for(q[0] = a[i++]; i <= tp; i++)
{
if(a[i].id > mid) continue;
while(h < t && a[i].right(k[t - 1])) --t;
while(h < t && a[i].right(k[h]))h++;
if(a[i].k != q[t].k) q[++t] = a[i];
else if(a[i].right(q[t].p)) q[t] = a[i];
if(h < t) k[t - 1] = cross(q[t - 1], q[t]);
}
while(h < t && q[h].right(k[t - 1])) --t;
return t - h > 1;
}
int main() {
n = read();
for(int i = 1; i <= n; i++) {
double x = read(), yd = read(), yp = read();
a[++tp] = Line(Vec(0, yd / x), Vec(1, yd / x - x), i);
a[++tp] = Line(Vec(1, yp / x - x), Vec(0, yp / x), i);
}
a[++tp] = Line(Vec(-inf, eps), Vec(-eps, eps), 0);
a[++tp] = Line(Vec(-eps, eps), Vec(-eps, inf), 0);
a[++tp] = Line(Vec(-eps, inf), Vec(-inf, inf), 0);
a[++tp] = Line(Vec(-inf, inf), Vec(-inf, eps), 0);
sort(a + 1, a + tp + 1);
int l = 1, r = n;
while(l + 1 < r) {
int mid = (l + r) >> 1;
if(check(mid)) l = mid;
else r = mid;
}
printf("%d\n", check(r) ? r : l);
return 0;
}
[HNOI2012]射箭(计算几何)的更多相关文章
- BZOJ 2732: [HNOI2012]射箭
2732: [HNOI2012]射箭 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2532 Solved: 849[Submit][Status] ...
- 洛谷P3222 [HNOI2012]射箭(计算几何,半平面交,双端队列)
洛谷题目传送门 设抛物线方程为\(y=ax^2+bx(a<0,b>0)\),我们想要求出一组\(a,b\)使得它尽可能满足更多的要求.这个显然可以二分答案. 如何check当前的\(mid ...
- [bzoj2732][HNOI2012]射箭
Description 沫沫最近在玩一个二维的射箭游戏,如下图所示,这个游戏中的$x$轴在地面,第一象限中有一些竖直线段作为靶子,任意两个靶子都没有公共部分,也不会接触坐标轴.沫沫控制一个位于$(0, ...
- [HNOI2012]射箭
Description 沫沫最近在玩一个二维的射箭游戏,如下图 1 所示,这个游戏中的 x 轴在地面,第一象限中有一些竖直线段作为靶子,任意两个靶子都没有公共部分,也不会接触坐标轴.沫沫控制一个位于( ...
- BZOJ2732:[HNOI2012]射箭——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=2732 https://www.luogu.org/problemnew/show/P3222#su ...
- bzoj2732: [HNOI2012]射箭 半平面交
这题乍一看与半平面交并没有什么卵联系,然而每个靶子都可以转化为两个半平面. scanf("%lf%lf%lf",&x,&ymin,&ymax); 于是乎就有 ...
- 2732: [HNOI2012]射箭( 半平面交 )
很久没写题解了= =,来水一发吧= = 首先这道题很明显就是求y=ax^2+bx的是否有值取,每一个式子都代表着两个半平面,然后直接半平面交就行了 借鉴了hzwer的代码,还是特别简洁的说 CODE: ...
- Luogu-3222 [HNOI2012]射箭
几何题,二次函数,化一下式子吧 设二次函数\(y=ax^2+bx\),对于一个线段\((x,y1)\),\((x,y2)\),与他相交的条件是\(y1<=ax^2+bx<=y2\) 对于\ ...
- 【bzoj2732】[HNOI2012]射箭 二分+半平面交
题目描述 给出二维平面上n个与y轴平行的线段,求最大的k,使得存在一条形如$y=ax^2+bx(a<0,b>0)$的抛物线与前k条线段均有公共点 输入 输入文件第一行是一个正整数N,表示一 ...
随机推荐
- Win10系列:C#应用控件基础13
Image控件 开发Windows应用商店应用时,除了在界面中显示文字信息以外,还可以加入图片来配合说明及增加美观度.使用Image控件能够实现显示图片的功能,开发者可以根据需求使图片按照不同的方式显 ...
- Servlet过滤器实现访客人数统计
第一. Servlet的创建和配置 1. 创建一个Servlet需要实现javax.servlet.Filter接口,同时实现Filter的3个方法. 第一个方法时过滤器中的 ...
- vuex-state
Vuex 通过 store 选项,提供了一种机制将状态从根组件“注入”到每一个子组件中,且子组件能通过 this.$store访问 const app = new Vue({ el: '#app', ...
- HOWTO For iSCSI-SCST && Gentoo HOWTO For iSCSI-SCST
前言:SCST是一个老版本的linux target实现了,现在基本已经被LIO取代 HOWTO For iSCSI-SCST 这是一个非常快速的HOWTO,旨在提供有关如何设置和配置iSCS ...
- FPGA型号解读
- 剑指Offer 19. 顺时针打印矩阵 (其他)
题目描述 输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字,例如,如果输入如下4 X 4矩阵: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 则依次打印出数 ...
- 【oracle入门】数据库系统结构----三级模式
概念模式:概念模式也称模式,是对数据库中全局数据路基结构的描述,是全体用户公共的数据视图.这种描述是抽象描述,不涉及具体硬件环境与平台,也与具有软件环境无关. 外模式:外模式也称子模式或者用户模式,他 ...
- HDU 2062:Subset sequence(思维)
Subset sequence Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tot ...
- macbook hive安装
1 原材料 1.1 已经安装好的伪分布式hadoop,版本2.8.3(参见链接https://www.cnblogs.com/wooluwalker/p/9128859.html) 1.2 apach ...
- linux shell 指令搜索顺序
在linux shell 中输入一个命令,如果有多个同名指令,shell需要按照一定规则去取优先级高的一个执行,shell命令的搜索顺序为: 1.别名,使用alias创建的命令. 2.关键字,如if, ...