题目链接:Easy Math

题目大意:给定\(n(1\leqslant n\leqslant 10^{12}),m(1\leqslant m\leqslant 2*10^{9})\),求\(\sum_{i=1}^{m}\mu (i\cdot n)\)。

题解:废话少说,直接上公式

$$\mu(i\cdot n)=\left\{\begin{matrix}
\mu(i)\cdot\mu(n) & gcd(i,n)==1\\
0 & other
\end{matrix}\right.$$

$$F(n,m)=\sum_{i=1}^{m}\mu(i\cdot n)$$

则有$$F(n,m)=\mu(n)\cdot\sum_{i=1}^{m}\mu (i)\cdot[gcd(i,n)==1]$$

由$$[n==1]=\sum_{d|n}^{ } \mu(d)$$

$$F(n,m)=\mu(n)\cdot\sum_{i=1}^{m}\mu (i)\sum_{d|gcd(i,n)}^{ }\mu(d)$$

$$F(n,m)=\mu(n)\cdot\sum_{d|n}^{d\leqslant m}\mu(d)\cdot\sum_{i=1}^{\left \lfloor \frac{m}{d} \right \rfloor}\mu(i\cdot d)$$

$$F(n,m)=\mu(n)\cdot\sum_{d|n}^{d\leqslant m}\mu(d)\cdot F(d,\left \lfloor \frac{m}{d} \right \rfloor)$$

推出式子后,递归求解即可,当n==1时,有\(F(n,m)=M(m)=\sum_{i=1}^{m}\mu(i)\),关于这个式子有一个莫比乌斯反演的经典公式,就是$$M(n)=1-\sum_{i=2}^{n}M(\left \lfloor \frac{n}{i} \right \rfloor)$$预处理出莫比乌斯函数及其前缀和的值后即可,求M(n)的时候记得要分块做

#include<bits/stdc++.h>
using namespace std;
#define N 10000001
#define LL long long
LL n,m,cnt,p[N],f[N],s[N];
map<LL,LL>M;
bool x[N];
void pretype()
{
f[]=;
for(int i=;i<N;i++)
{
if(!x[i])p[++cnt]=i,f[i]=-;
for(int j=;j<=cnt && i*p[j]<N;j++)
{
f[i*p[j]]=-f[i];
x[i*p[j]]=true;
if(i%p[j]==){f[i*p[j]]=;break;}
}
}
for(int i=;i<N;i++)
s[i]=s[i-]+f[i];
}
LL get(LL n)
{
if(n<N)return f[n];
LL k=;
for(LL i=;i*i<=n;i++)
if(n%i==)
{
if(n%(i*i)==)return ;
k*=-,n/=i;
}
if(n>)k*=-;return k;
}
LL get_M(LL n)
{
if(n<N)return s[n];
if(M[n])return M[n];
LL res=,nxt;
for(LL i=;i<=n;i=nxt+)
{
nxt=min(n,n/(n/i));
res-=(nxt-i+)*get_M(n/i);
}
return M[n]=res;
}
LL F(LL n,LL m)
{
if(n==)return get_M(m);
LL miu=get(n),res=;
if(miu==)return ;
for(LL d=;d*d<=n && d<=m;d++)if(n%d==)
{
res+=get(d)*F(d,m/d);
if(n/d<=m)res+=get(n/d)*F(n/d,m/(n/d));
}
return miu*res;
}
int main()
{
pretype();
scanf("%lld%lld",&m,&n);
printf("%lld\n",F(n,m));
}

[ACM-ICPC 2018 徐州赛区网络预赛][D. Easy Math]的更多相关文章

  1. 徐州赛区网络预赛 D Easy Math

    比赛快结束的适合看了一下D题,发现跟前几天刚刚做过的HDU 5728 PowMod几乎一模一样,当时特兴奋,结果一直到比赛结束都一直WA.回来仔细一琢磨才发现,PowMod这道题保证了n不含平方因子, ...

  2. ACM-ICPC 2018 徐州赛区网络预赛 G. Trace (思维,贪心)

    ACM-ICPC 2018 徐州赛区网络预赛 G. Trace (思维,贪心) Trace 问答问题反馈 只看题面 35.78% 1000ms 262144K There's a beach in t ...

  3. ACM-ICPC 2018 徐州赛区网络预赛 J. Maze Designer (最大生成树+LCA求节点距离)

    ACM-ICPC 2018 徐州赛区网络预赛 J. Maze Designer J. Maze Designer After the long vacation, the maze designer ...

  4. 计蒜客 1460.Ryuji doesn't want to study-树状数组 or 线段树 (ACM-ICPC 2018 徐州赛区网络预赛 H)

    H.Ryuji doesn't want to study 27.34% 1000ms 262144K   Ryuji is not a good student, and he doesn't wa ...

  5. ACM-ICPC 2018 徐州赛区网络预赛 B(dp || 博弈(未完成)

    传送门 题面: In a world where ordinary people cannot reach, a boy named "Koutarou" and a girl n ...

  6. ACM-ICPC 2018 徐州赛区网络预赛 B. BE, GE or NE

    In a world where ordinary people cannot reach, a boy named "Koutarou" and a girl named &qu ...

  7. ACM-ICPC 2018 徐州赛区网络预赛 H. Ryuji doesn't want to study

    262144K   Ryuji is not a good student, and he doesn't want to study. But there are n books he should ...

  8. ACM-ICPC 2018 徐州赛区网络预赛 F. Features Track

    262144K   Morgana is learning computer vision, and he likes cats, too. One day he wants to find the ...

  9. ACM-ICPC 2018 徐州赛区网络预赛 I. Characters with Hash

    Mur loves hash algorithm, and he sometimes encrypt another one's name, and call him with that encryp ...

随机推荐

  1. ASP.NET WebApi 基于JWT实现Token签名认证

    一.前言 明人不说暗话,跟着阿笨一起玩WebApi!开发提供数据的WebApi服务,最重要的是数据的安全性.那么对于我们来说,如何确保数据的安全将会是需要思考的问题.在ASP.NET WebServi ...

  2. java后台服务器启动脚本

    最近由于经常在项目上线或者调试中启动服务,由于要设置环境变量这些,所以为了方便写了个启动脚本,希望能够帮助大家,也算是给自己做个小笔记: example_project_start.sh: # /bi ...

  3. Apache shiro如何实现一个账户同一时刻只有一个人登录

    继承AuthorizingRealm类,重写方法doGetAuthenticationInfo /** * 认证(登录时调用) */ @Override protected Authenticatio ...

  4. 关于c++ template的branching和Recursion的一段很好的描述

    来自: <Learning Boost C++ Libraries>  第290页

  5. docker_天兔

    Docker学习教程之Lepus部署(MySQL监控) 介绍 Lepus是一个由Python+PHP开发的数据库企业级监控系统,可用于MySQL/Oracle/MongoDB/Redis 下载镜像do ...

  6. javascript umd esm slim

    在CDN的连接中看到多个连接时如何选择? JavaScript 模块现状 UMD和ECMAScript模块 https://cdn.bootcss.com/popper.js/1.13.0/esm/p ...

  7. [Java] Windows/Linux路径不同时,统一war的最简办法

    作者: zyl910 一.缘由 在项目开发时,因为运行环境的不同,导致有时得分别为不同的环境,切换配置参数打不同war包.但手工切换配置文件的话,不仅费时费力,而且容易出错. 有些打包工具支持配置切换 ...

  8. Android 隐藏系统状态栏

    通常的做法是这样的: private static boolean isStatusbarVisible(Activity activity) { int uiOptions = activity.g ...

  9. hdu 3068 最长回文(manacher&amp;最长回文子串)

    最长回文 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submi ...

  10. ph 提交代码的步骤;

    ph 提交代码的步骤: git status 查看状态: ls -ah 查看文件: git stash list 查看本地缓存的文件: git branch 查看本地的分支: git checkout ...