[ACM-ICPC 2018 徐州赛区网络预赛][D. Easy Math]
题目链接:Easy Math
题目大意:给定\(n(1\leqslant n\leqslant 10^{12}),m(1\leqslant m\leqslant 2*10^{9})\),求\(\sum_{i=1}^{m}\mu (i\cdot n)\)。
题解:废话少说,直接上公式
$$\mu(i\cdot n)=\left\{\begin{matrix}
\mu(i)\cdot\mu(n) & gcd(i,n)==1\\
0 & other
\end{matrix}\right.$$
设
$$F(n,m)=\sum_{i=1}^{m}\mu(i\cdot n)$$
则有$$F(n,m)=\mu(n)\cdot\sum_{i=1}^{m}\mu (i)\cdot[gcd(i,n)==1]$$
由$$[n==1]=\sum_{d|n}^{ } \mu(d)$$
$$F(n,m)=\mu(n)\cdot\sum_{i=1}^{m}\mu (i)\sum_{d|gcd(i,n)}^{ }\mu(d)$$
$$F(n,m)=\mu(n)\cdot\sum_{d|n}^{d\leqslant m}\mu(d)\cdot\sum_{i=1}^{\left \lfloor \frac{m}{d} \right \rfloor}\mu(i\cdot d)$$
$$F(n,m)=\mu(n)\cdot\sum_{d|n}^{d\leqslant m}\mu(d)\cdot F(d,\left \lfloor \frac{m}{d} \right \rfloor)$$
推出式子后,递归求解即可,当n==1时,有\(F(n,m)=M(m)=\sum_{i=1}^{m}\mu(i)\),关于这个式子有一个莫比乌斯反演的经典公式,就是$$M(n)=1-\sum_{i=2}^{n}M(\left \lfloor \frac{n}{i} \right \rfloor)$$预处理出莫比乌斯函数及其前缀和的值后即可,求M(n)的时候记得要分块做
#include<bits/stdc++.h>
using namespace std;
#define N 10000001
#define LL long long
LL n,m,cnt,p[N],f[N],s[N];
map<LL,LL>M;
bool x[N];
void pretype()
{
f[]=;
for(int i=;i<N;i++)
{
if(!x[i])p[++cnt]=i,f[i]=-;
for(int j=;j<=cnt && i*p[j]<N;j++)
{
f[i*p[j]]=-f[i];
x[i*p[j]]=true;
if(i%p[j]==){f[i*p[j]]=;break;}
}
}
for(int i=;i<N;i++)
s[i]=s[i-]+f[i];
}
LL get(LL n)
{
if(n<N)return f[n];
LL k=;
for(LL i=;i*i<=n;i++)
if(n%i==)
{
if(n%(i*i)==)return ;
k*=-,n/=i;
}
if(n>)k*=-;return k;
}
LL get_M(LL n)
{
if(n<N)return s[n];
if(M[n])return M[n];
LL res=,nxt;
for(LL i=;i<=n;i=nxt+)
{
nxt=min(n,n/(n/i));
res-=(nxt-i+)*get_M(n/i);
}
return M[n]=res;
}
LL F(LL n,LL m)
{
if(n==)return get_M(m);
LL miu=get(n),res=;
if(miu==)return ;
for(LL d=;d*d<=n && d<=m;d++)if(n%d==)
{
res+=get(d)*F(d,m/d);
if(n/d<=m)res+=get(n/d)*F(n/d,m/(n/d));
}
return miu*res;
}
int main()
{
pretype();
scanf("%lld%lld",&m,&n);
printf("%lld\n",F(n,m));
}
[ACM-ICPC 2018 徐州赛区网络预赛][D. Easy Math]的更多相关文章
- 徐州赛区网络预赛 D Easy Math
比赛快结束的适合看了一下D题,发现跟前几天刚刚做过的HDU 5728 PowMod几乎一模一样,当时特兴奋,结果一直到比赛结束都一直WA.回来仔细一琢磨才发现,PowMod这道题保证了n不含平方因子, ...
- ACM-ICPC 2018 徐州赛区网络预赛 G. Trace (思维,贪心)
ACM-ICPC 2018 徐州赛区网络预赛 G. Trace (思维,贪心) Trace 问答问题反馈 只看题面 35.78% 1000ms 262144K There's a beach in t ...
- ACM-ICPC 2018 徐州赛区网络预赛 J. Maze Designer (最大生成树+LCA求节点距离)
ACM-ICPC 2018 徐州赛区网络预赛 J. Maze Designer J. Maze Designer After the long vacation, the maze designer ...
- 计蒜客 1460.Ryuji doesn't want to study-树状数组 or 线段树 (ACM-ICPC 2018 徐州赛区网络预赛 H)
H.Ryuji doesn't want to study 27.34% 1000ms 262144K Ryuji is not a good student, and he doesn't wa ...
- ACM-ICPC 2018 徐州赛区网络预赛 B(dp || 博弈(未完成)
传送门 题面: In a world where ordinary people cannot reach, a boy named "Koutarou" and a girl n ...
- ACM-ICPC 2018 徐州赛区网络预赛 B. BE, GE or NE
In a world where ordinary people cannot reach, a boy named "Koutarou" and a girl named &qu ...
- ACM-ICPC 2018 徐州赛区网络预赛 H. Ryuji doesn't want to study
262144K Ryuji is not a good student, and he doesn't want to study. But there are n books he should ...
- ACM-ICPC 2018 徐州赛区网络预赛 F. Features Track
262144K Morgana is learning computer vision, and he likes cats, too. One day he wants to find the ...
- ACM-ICPC 2018 徐州赛区网络预赛 I. Characters with Hash
Mur loves hash algorithm, and he sometimes encrypt another one's name, and call him with that encryp ...
随机推荐
- ASP.NET WebApi 基于JWT实现Token签名认证
一.前言 明人不说暗话,跟着阿笨一起玩WebApi!开发提供数据的WebApi服务,最重要的是数据的安全性.那么对于我们来说,如何确保数据的安全将会是需要思考的问题.在ASP.NET WebServi ...
- java后台服务器启动脚本
最近由于经常在项目上线或者调试中启动服务,由于要设置环境变量这些,所以为了方便写了个启动脚本,希望能够帮助大家,也算是给自己做个小笔记: example_project_start.sh: # /bi ...
- Apache shiro如何实现一个账户同一时刻只有一个人登录
继承AuthorizingRealm类,重写方法doGetAuthenticationInfo /** * 认证(登录时调用) */ @Override protected Authenticatio ...
- 关于c++ template的branching和Recursion的一段很好的描述
来自: <Learning Boost C++ Libraries> 第290页
- docker_天兔
Docker学习教程之Lepus部署(MySQL监控) 介绍 Lepus是一个由Python+PHP开发的数据库企业级监控系统,可用于MySQL/Oracle/MongoDB/Redis 下载镜像do ...
- javascript umd esm slim
在CDN的连接中看到多个连接时如何选择? JavaScript 模块现状 UMD和ECMAScript模块 https://cdn.bootcss.com/popper.js/1.13.0/esm/p ...
- [Java] Windows/Linux路径不同时,统一war的最简办法
作者: zyl910 一.缘由 在项目开发时,因为运行环境的不同,导致有时得分别为不同的环境,切换配置参数打不同war包.但手工切换配置文件的话,不仅费时费力,而且容易出错. 有些打包工具支持配置切换 ...
- Android 隐藏系统状态栏
通常的做法是这样的: private static boolean isStatusbarVisible(Activity activity) { int uiOptions = activity.g ...
- hdu 3068 最长回文(manacher&最长回文子串)
最长回文 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submi ...
- ph 提交代码的步骤;
ph 提交代码的步骤: git status 查看状态: ls -ah 查看文件: git stash list 查看本地缓存的文件: git branch 查看本地的分支: git checkout ...