Pandas 基础(9) - 组合方法 merge
首先, 还是以天气为例, 准备如下数据:
df1 = pd.DataFrame({
'city': ['newyork', 'chicago', 'orlando'],
'temperature': [21, 24, 32],
})
df2 = pd.DataFrame({
'city': ['newyork', 'chicago', 'orlando'],
'humidity': [89, 79, 80],
})
df = pd.merge(df1, df2, on='city')
输出:
上面的例子就是以 'city' 为基准对两个 dataframe 进行合并, 但是两组数据都是高度一致, 下面调整一下:
df1 = pd.DataFrame({
'city': ['newyork', 'chicago', 'orlando', 'baltimore'],
'temperature': [21, 24, 32, 29],
})
df2 = pd.DataFrame({
'city': ['newyork', 'chicago', 'san francisco'],
'humidity': [89, 79, 80],
})
df = pd.merge(df1, df2, on='city')
输出:
从输出我们看出, 通过 merge 合并, 会取两个数据的交集.
那么, 我们应该可以设想到, 可以通过调整参数, 来达到不同的取值范围.
取并集:
df = pd.merge(df1, df2, on='city', how='outer')
输出:
左对齐:
df = pd.merge(df1, df2, on='city', how='left')
输出:
右对齐:
df = pd.merge(df1, df2, on='city', how='right')
另外, 在我们取并集的时候, 我们有时可能会想要知道, 某个数据是来自哪边, 可以通过 indicator 参数来获取:
df = pd.merge(df1, df2, on='city', how='outer', indicator=True)
输出:
在上面的例子中, 被合并的数据的列名是没有冲突的, 所以合并的很顺利, 那么如果两组数据有相同的列名, 又会是什么样呢? 看下面的例子:
df1 = pd.DataFrame({
'city': ['newyork', 'chicago', 'orlando', 'baltimore'],
'temperature': [21, 24, 32, 29],
'humidity': [89, 79, 80, 69],
})
df2 = pd.DataFrame({
'city': ['newyork', 'chicago', 'san francisco'],
'temperature': [30, 32, 28],
'humidity': [80, 60, 70],
})
df = pd.merge(df1, df2, on='city')
输出:
我们发现, 相同的列名被自动加上了 'x', 'y' 作为区分, 为了更直观地观察数据, 我们也可以自定义这个区分的标志:
df3 = pd.merge(df1, df2, on='city', suffixes=['_left', '_right'])
输出:
好了, 以上, 就是关于 merge 合并的相关内容, enjoy~~~
Pandas 基础(9) - 组合方法 merge的更多相关文章
- 利用Python进行数据分析(12) pandas基础: 数据合并
pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法c ...
- numpy&pandas基础
numpy基础 import numpy as np 定义array In [156]: np.ones(3) Out[156]: array([1., 1., 1.]) In [157]: np.o ...
- 利用Python进行数据分析(9) pandas基础: 汇总统计和计算
pandas 对象拥有一些常用的数学和统计方法. 例如,sum() 方法,进行列小计: sum() 方法传入 axis=1 指定为横向汇总,即行小计: idxmax() 获取最大值对应的索 ...
- 利用Python进行数据分析(8) pandas基础: Series和DataFrame的基本操作
一.reindex() 方法:重新索引 针对 Series 重新索引指的是根据index参数重新进行排序. 如果传入的索引值在数据里不存在,则不会报错,而是添加缺失值的新行. 不想用缺失值,可以用 ...
- 利用Python进行数据分析(7) pandas基础: Series和DataFrame的简单介绍
一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构 ...
- Pandas基础学习与Spark Python初探
摘要:pandas是一个强大的Python数据分析工具包,pandas的两个主要数据结构Series(一维)和DataFrame(二维)处理了金融,统计,社会中的绝大多数典型用例科学,以及许多工程领域 ...
- Pandas 基础(1) - 初识及安装 yupyter
Hello, 大家好, 昨天说了我会再更新一个关于 Pandas 基础知识的教程, 这里就是啦......Pandas 被广泛应用于数据分析领域, 是一个很好的分析工具, 也是我们后面学习 machi ...
- 基于 Python 和 Pandas 的数据分析(2) --- Pandas 基础
在这个用 Python 和 Pandas 实现数据分析的教程中, 我们将明确一些 Pandas 基础知识. 加载到 Pandas Dataframe 的数据形式可以很多, 但是通常需要能形成行和列的数 ...
- python学习笔记(四):pandas基础
pandas 基础 serise import pandas as pd from pandas import Series, DataFrame obj = Series([4, -7, 5, 3] ...
随机推荐
- mui 弹窗提醒,form表单基本信息
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta name ...
- css学习_css定位
1.定在某个位置:简称定位 2.浮动和定位的区别 定位的分类:定位模式 a.静态定位:(标准流) b.相对定位(不脱离文档流)---以自己左上角为基准点定位 c.绝对定位absolute (拼爹型: ...
- Web开发——HTML基础(HTML表单/下拉列表/多行输入)
参考: 参考:http://www.w3school.com.cn/html/html_forms.asp 目录: 1.<form> 元素 1.1 <input> 元素(输入属 ...
- git 用远程覆盖本地
git 用远程覆盖本地 git fetch --all git reset --hard origin/master
- asp.net mvc easyui tree
1.html页面代码: <div class="easyui-panel" style="padding:5px" id="powerTree& ...
- h5新增标签及css3新增属性
- h5新增的标签 新增元素 说明 video 表示一段视频并提供播放的用户界面 audio 表示音频 canvas 表示位图区域 source 为video和audio提供数据源 track 为vi ...
- jsr-303 参数校验-学习(转)
1.是什么? JSR303 是一套 JavaBean 参数校验的标准,它定义了很多常用的校验注解,比如: ----------------------------------------------- ...
- abap test msg
- [svc]unix和cpu发展历史
最近搞汇编 , 有一款8086cpu,16bit, 支持内存1M 于是勾起了对计算机历史的兴趣,多了解了下 unix起源历史 [Unix发展历史 - 程序猿-贝岩博客 - CSDN博客]https:/ ...
- MySQL Backup mysqldump 常用选项与主要用法
The mysqldump client utility performs logical backups, producing a set of SQL statements that can be ...