Pairs Forming LCM LightOJ - 1236 (算术基本定理)
题意:
就是求1-n中有多少对i 和 j 的最小公倍数为n (i <= j)
解析:
而这题,我们假设( a , b ) = n ,那么:
n=pk11pk22⋯pkss,
a=pd11pd22⋯pdss, b=pe11pe22⋯pess,
可以确定max(ei,di)=ki, 关于这点 可以自己反证一下
那么ki的组成就是ei与di中一个等于ki,
另一个任取[0,ki-1]中的一个数,
那么就有 2ki 种方案,
由于 ei=di=ki 只有一种,(两种都为ki)
所以第i位方案数为2ki+1,
有序对(a,b)方案数就是(2k1+1)(2k2+1)⋯(2ks+1),
无序对(a,b)方案数就是:{[(2k1+1)(2k2+1)⋯(2ks+1)] + 1}/2
(n,n)已经只有一个,不会重复,所以+1 再除 2。
题解转载至:https://blog.csdn.net/qq_15714857/article/details/48641121
代码:
#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define maxn 10000900
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int LL_INF = 0x7fffffffffffffff,INF = 0x3f3f3f3f;
LL primes[maxn/];
bool vis[maxn];
LL ans = ;
void init()
{
mem(vis,);
for(int i=; i<maxn; i++)
if(!vis[i])
{
primes[ans++] = i;
for(LL j=(LL)i*i; j<maxn; j+=i)
vis[j] = ;
}
} int main()
{
init();
int T;
int kase = ;
cin>> T;
while(T--)
{
LL n, res = , cnt = ;
cin>> n;
for(LL i=; i<ans && primes[i] * primes[i] <= n; i++)
{
LL cnt2 = ;
while(n % primes[i] == )
{
n /= primes[i];
cnt2++;
}
if(cnt2 > )
{
res *= (*cnt2 + );
}
}
if(n > )
{
res *= ;
}
printf("Case %d: %lld\n",++kase,res/+);
}
return ;
}
Pairs Forming LCM LightOJ - 1236 (算术基本定理)的更多相关文章
- Pairs Forming LCM LightOJ - 1236 素因子分解
Find the result of the following code: long long pairsFormLCM( int n ) { long long res = 0; fo ...
- G - Pairs Forming LCM LightOJ - 1236 (质因子分解)
题解:这道题要从n的角度来考虑i和j. n可以表示为n=a1^p1*a2^p2*a3^p3.......n=lcm(i,j),那么质因子a1^p1,a1可以在i或者j中,并且p1=max(a1i,a1 ...
- Pairs Forming LCM (LightOJ - 1236)【简单数论】【质因数分解】【算术基本定理】(未完成)
Pairs Forming LCM (LightOJ - 1236)[简单数论][质因数分解][算术基本定理](未完成) 标签: 入门讲座题解 数论 题目描述 Find the result of t ...
- LightOJ 1236 Pairs Forming LCM (LCM 唯一分解定理 + 素数筛选)
http://lightoj.com/volume_showproblem.php?problem=1236 Pairs Forming LCM Time Limit:2000MS Memor ...
- LightOJ 1236 - Pairs Forming LCM(素因子分解)
B - Pairs Forming LCM Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu ...
- 1236 - Pairs Forming LCM
1236 - Pairs Forming LCM Find the result of the following code: long long pairsFormLCM( int n ) { ...
- Pairs Forming LCM(素因子分解)
http://acm.hust.edu.cn/vjudge/contest/view.action?cid=109329#problem/B 全题在文末. 题意:在a,b中(a,b<=n) ...
- Pairs Forming LCM (LCM+ 唯一分解定理)题解
Pairs Forming LCM Find the result of the following code: ; i <= n; i++ ) for( int j = i; j ...
- Pairs Forming LCM
题目: B - Pairs Forming LCM Time Limit:2000MS Memory Limit:32768KB Description Find the result of ...
随机推荐
- 【Python】Python正则表达式使用指导
1. 正则表达式基础 1.1. 简单介绍 正则表达式并不是Python的一部分.正则表达式是用于处理字符串的强大工具,拥有自己独特的语法以及一个独立的处理引擎,效率上可能不如str自带的方法,但功能十 ...
- 安全提示:IIS不要开启“WebDAV”扩展(转载)
在IIS设置里,有一个“Web服务扩展”的设置,其中包括“WebDAV”扩展.许多人都不明白,这个“WebDAV”扩展是干嘛用的,要不要开启呢?有不少人的想法是“开启吧,以免影响网站运行,启用总比不启 ...
- ASP.NET Core如何设置请求超时时间
如果一个请求在ASP.NET Core中运行太久,会导致请求超时,目前ASP.NET Core对请求超时的设置比较麻烦,本文列出目前收集到的一些方法,供大家参考. 部署ASP.NET Core到IIS ...
- [Spark][python]RDD的collect 作用是什么?
[Spark][Python]sortByKey 例子的继续 RDD的collect() 作用是什么? “[Spark][Python]sortByKey 例子”的继续 In [20]: mydata ...
- Express中间件,看这篇文章就够了(#^.^#)
底层:http模块 express目前是最流行的基于Node.js的web开发框架,express框架建立在内置的http模块上, var http = require('http') var app ...
- Vue中axios访问 后端跨域问题
public class AllowOriginFilter implements Filter { @SuppressWarnings("unused") public void ...
- width,height为多少px时,A4纸打印时刚好一页?
计算方式一般的分辨率为XX像素/英寸,其中一英寸为25.4毫米.所以一毫米的像素数就为XX/25.4.现在的工作就是求XX的值了,把XX的值求出来以后,直接用XX/25.4 * 210就得到A4纸的像 ...
- nginx域名访问的白名单配置梳理
在日常运维工作中,会碰到这样的需求:设置网站访问只对某些ip开放,其他ip的客户端都不能访问.可以通过下面四种方法来达到这种效果:1)针对nginx域名配置所启用的端口(比如80端口)在iptable ...
- Jenkins新建项目中源码管理Repository URL使用Git报错:Failed to connect to repository : Command "git ls-remote -h......
之前部署了Gitlab+Gerrit+Jenkins持续集成环境,但在Jenkins中新建项目的源码管理"Repository URL"中添加git地址环节出现了问题,信息为&qu ...
- Python学习笔记 -- 第一章
本笔记参考廖雪峰的Python教程 简介 Python是一种计算机高级程序设计语言. 用Python可以做什么? 可以做日常任务,比如自动备份你的MP3:可以做网站,很多著名的网站包括YouTube就 ...