Pairs Forming LCM LightOJ - 1236 (算术基本定理)
题意:
就是求1-n中有多少对i 和 j 的最小公倍数为n (i <= j)
解析:
而这题,我们假设( a , b ) = n ,那么:
n=pk11pk22⋯pkss,
a=pd11pd22⋯pdss, b=pe11pe22⋯pess,
可以确定max(ei,di)=ki, 关于这点 可以自己反证一下
那么ki的组成就是ei与di中一个等于ki,
另一个任取[0,ki-1]中的一个数,
那么就有 2ki 种方案,
由于 ei=di=ki 只有一种,(两种都为ki)
所以第i位方案数为2ki+1,
有序对(a,b)方案数就是(2k1+1)(2k2+1)⋯(2ks+1),
无序对(a,b)方案数就是:{[(2k1+1)(2k2+1)⋯(2ks+1)] + 1}/2
(n,n)已经只有一个,不会重复,所以+1 再除 2。
题解转载至:https://blog.csdn.net/qq_15714857/article/details/48641121
代码:
#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define maxn 10000900
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int LL_INF = 0x7fffffffffffffff,INF = 0x3f3f3f3f;
LL primes[maxn/];
bool vis[maxn];
LL ans = ;
void init()
{
mem(vis,);
for(int i=; i<maxn; i++)
if(!vis[i])
{
primes[ans++] = i;
for(LL j=(LL)i*i; j<maxn; j+=i)
vis[j] = ;
}
} int main()
{
init();
int T;
int kase = ;
cin>> T;
while(T--)
{
LL n, res = , cnt = ;
cin>> n;
for(LL i=; i<ans && primes[i] * primes[i] <= n; i++)
{
LL cnt2 = ;
while(n % primes[i] == )
{
n /= primes[i];
cnt2++;
}
if(cnt2 > )
{
res *= (*cnt2 + );
}
}
if(n > )
{
res *= ;
}
printf("Case %d: %lld\n",++kase,res/+);
}
return ;
}
Pairs Forming LCM LightOJ - 1236 (算术基本定理)的更多相关文章
- Pairs Forming LCM LightOJ - 1236 素因子分解
Find the result of the following code: long long pairsFormLCM( int n ) { long long res = 0; fo ...
- G - Pairs Forming LCM LightOJ - 1236 (质因子分解)
题解:这道题要从n的角度来考虑i和j. n可以表示为n=a1^p1*a2^p2*a3^p3.......n=lcm(i,j),那么质因子a1^p1,a1可以在i或者j中,并且p1=max(a1i,a1 ...
- Pairs Forming LCM (LightOJ - 1236)【简单数论】【质因数分解】【算术基本定理】(未完成)
Pairs Forming LCM (LightOJ - 1236)[简单数论][质因数分解][算术基本定理](未完成) 标签: 入门讲座题解 数论 题目描述 Find the result of t ...
- LightOJ 1236 Pairs Forming LCM (LCM 唯一分解定理 + 素数筛选)
http://lightoj.com/volume_showproblem.php?problem=1236 Pairs Forming LCM Time Limit:2000MS Memor ...
- LightOJ 1236 - Pairs Forming LCM(素因子分解)
B - Pairs Forming LCM Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu ...
- 1236 - Pairs Forming LCM
1236 - Pairs Forming LCM Find the result of the following code: long long pairsFormLCM( int n ) { ...
- Pairs Forming LCM(素因子分解)
http://acm.hust.edu.cn/vjudge/contest/view.action?cid=109329#problem/B 全题在文末. 题意:在a,b中(a,b<=n) ...
- Pairs Forming LCM (LCM+ 唯一分解定理)题解
Pairs Forming LCM Find the result of the following code: ; i <= n; i++ ) for( int j = i; j ...
- Pairs Forming LCM
题目: B - Pairs Forming LCM Time Limit:2000MS Memory Limit:32768KB Description Find the result of ...
随机推荐
- SkylineGlobe 如何二次开发获取三维模型的BBOX和设置Tint属性
测试模型类型选择TerrainModel和Feature两种,测试代码如下: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transiti ...
- 11-51单片机ESP8266学习-AT指令(ESP8266作为TCP客户端,连接TCP服务器,用串口调试助手和手机TCP调试助手测试)
写完题目刚想起来一件事情,如果手机作为客户端(不连接路由器的情况下),手机连接模块的无线会分配一个IP地址,,,这个IP地址事先我也不知道....我先看看AT指令里面有没有一个指令可以打印一下连接自己 ...
- UOJ224 NOI2016 旷野大计算 构造、造计算机
传送门——UOJ 传送门——Luogu 这段时间请不要找Itst聊天,Itst已经做疯了 事实证明大模拟题不可做 query 1 送分,加起来一起乘即可 I I + < - O query 2 ...
- WPF C#截图功能 仿qq截图
原文:WPF C#截图功能 仿qq截图 先上效果图 源码下载地址:http://download.csdn.net/detail/candyvoice/9788099 描述:启动程序,点击窗口butt ...
- 在平衡树的海洋中畅游(一)——Treap
记得有一天翔哥毒奶我们: 当你们已经在平衡树的海洋中畅游时,我还在线段树的泥沼中挣扎. 我觉得其实像我这种对平衡树一无所知的蒟蒻也要开一开数据结构了. 然后花了一天啃了下最简单的平衡树Treap,感觉 ...
- 以太坊remix-ide本地环境搭建
remix-ide简介 remix-ide是一款以太坊官方solisity语言的在线IDE,可用于智能合约的编写.测试与部署,不过某些时候可能是在离线环境下工作或者受限于网速原因,使用在线remi ...
- Linux下"负载均衡+高可用"集群的考虑点 以及 高可用方案说明(Keepalive/Heartbeat)
当下Linux运维技术越来越受到企业的关注和追捧, 在某些企业, 尤其是牵涉到电子商务和电子广告类的网站,通常会要求作负载均衡和高可用的Linux集群方案.那么如何实施Llinux集群架构,才能既有效 ...
- D. Fun with Integers
链接 [http://codeforces.com/contest/1062/problem/D] 题意 给你n,让你从2到n这个区间找任意两个数,使得一个数是另一个的因子,绝对值小的可以变为绝对值大 ...
- Linux内核分析作业第五周
系统调用的三个层次(下) 一.给MenuOS增加time和time-asm命令 1.克隆并自动编译 MenuOS rm menu -rf 强制删除原menu文件 git clone https://g ...
- 一些调格式的经验 & 插入图注和尾注
一些调格式的经验(以Word2010为例) 1. 从目录正文分别编页码 将光标放在要重新编写页码起始页的最开始位置 分节:页面布局->分隔符->分节符(连续) 插入页码后,选中页码起始页页 ...