Rather less, but better.】----卡尔·弗里德里希·高斯(1777-1855)

(2016诸暨质检18)已知$f(x)=x^2-a|x-1|+b(a>0,b>-1)$.

(Ⅰ)若b=0,a>2,求f(x)在区间[0.2]内的最小值m(a);

(Ⅱ)若f(x)在区间[0.2]内不同的零点恰有两个,且落在区间$[0,1),(1,2]$内各一个,

求a-b的取值范围。

先来看看参考答案的标准解答。(要掌握,会写)

评:我们把问题看成$y=x^2+b$和$y=a|x-1|$的交点问题。容易知道$a-b$的几何意义是距

     离,由图显然$a\rightarrow+\infty$,距离无穷大.取到最小时显然当折线与抛物线右侧

     相切,此时可知切点$p(\frac{a}{2},\frac{a^2}{4}+b),$且$\frac{a^2}{4}+b=a(\frac{a}{2}-1)$,$\frac{a}{2}\in(1,2],$故$a-b$单变量后变为二次函数求最值问题,易得.

MT【54】一道二次函数问题的几何意义的更多相关文章

  1. MT【56】2017联赛一试解答最后一题:一道复数题的几何意义

  2. Hibernate配置文档详解

    Hibernate配置文档有框架总部署文档hibernate.cfg.xml 和映射类的配置文档 ***.hbm.xml hibernate.cfg.xml(文件位置直接放在src源文件夹即可) (在 ...

  3. 【一天一道LeetCode】#54. Spiral Matrix

    一天一道LeetCode系列 (一)题目 Given a matrix of m x n elements (m rows, n columns), return all elements of th ...

  4. MT【329】二次函数系数的最大最小

    已知二次函数$f(x)=ax^2+bx+c$有零点,且$a+b+c=1$ 若$t=\min\{a,b,c\}$求$t$的最大值. 分析:由$a,c$的对称性,不妨$c\ge a$即$2a+b\le1$ ...

  5. MT【219】构造二次函数

    (2012北大保送)已知$f(x)$是二次函数,且$a,f(a),f(f(a)),f(f(f(a)))$是正项等比数列;求证:$f(a)=a$ 构造二次函数$f(x)=qx$,则$a,f(a),f(f ...

  6. MT【39】构造二次函数证明

    这种构造二次函数的方法最早接触的应该是在证明柯西不等式时: 再举一例: 最后再举个反向不等式的例子: 评:此类题目的证明是如何想到的呢?他们都有一个明显的特征$AB\ge(\le)C^2$,此时构造二 ...

  7. MT【37】二次函数与整系数有关的题

    解析: 评:两根式是不错的考虑方向,一方面二次函数两根式之前有相应的经验,另一方面这里$\sqrt{\frac{b^2}{4}-c}$正好和两个根有关系.

  8. MT【282】一道几何题

    2010浙江省数学竞赛,附加题. 设$D,E,F$分别为$\Delta ABC$的三边$BC,CA,AB$上的点,记$\alpha=\dfrac{BD}{BC},\beta=\dfrac{BD}{BC ...

  9. MT【274】一道漂亮的不等式题

    已知$x_1^2+x_2^2+\cdots+x_6^2=6,x_1+x_2+\cdots+x_6=0,$证明:$x_1x_2\cdots x_6\le\dfrac{1}{2}$ 解答:显然只需考虑2个 ...

随机推荐

  1. sql 语言

    sql 语言 DDL DDL 全称 Data Definition Language,即数据定义语言. DATABASE 创建数据库 CREATE DATABASE 语句用于创建数据库. CREATE ...

  2. LOJ2541 PKUWC2018 猎人杀 期望、容斥、生成函数、分治

    传送门 首先,每一次有一个猎人死亡之后\(\sum w\)会变化,计算起来很麻烦,所以考虑在某一个猎人死亡之后给其打上标记,仍然计算他的\(w\),只是如果打中了一个打上了标记的人就重新选择.这样对应 ...

  3. UOJ347 WC2018 通道 边分治、虚树

    传送门 毒瘤数据结构题qwq 设三棵树分别为$T1,T2,T3$ 先将$T1$边分治,具体步骤如下: ①多叉树->二叉树,具体操作是对于每一个父亲,建立与儿子个数相同的虚点,将父亲与这些虚点穿成 ...

  4. Luogu4338 ZJOI2018 历史 LCT、贪心

    传送门 题意:在$N$个点的$LCT$中,最开始每条边的虚实不定,给出每一个点的$access$次数,求一种$access$方案使得每条边的虚实变换次数之和最大,需要支持动态增加某个点的$access ...

  5. python winpdb远程调试

    1.使用rpdb2.start_embedded_debugger ,注意要将参数fAllowRemote 设置为True 2.winpdb前端GUI使用python2 3.rpdb兼容python2 ...

  6. C#搭建CEF(CEFGLUE) 环境。

    CEF(CEFGLUE)如果想做浏览器的,对这个应该不陌生了,相关资料执行百度了,现在写这文章这是按当前时间做一个环境搭建时所需要的资料的一个收集. 1:下载Xilium.CefGlue项目源码. 链 ...

  7. Zabbix实战-简易教程--DB类--ClickHouse

    一.ClickHouse介绍 Clickhouse是一个用于联机分析处理(OLAP)的列式数据库管理系统(columnar DBMS). 传统数据库在数据大小比较小,索引大小适合内存,数据缓存命中率足 ...

  8. MVC 使用cshtml的一些基础知识-和相关整理

    首先在认识cshtml之前,先要了解一下Razor视图引擎 如果对此有疑问的话可以借鉴 博客园博文:http://kb.cnblogs.com/page/96883/ 或 博客博文:http://ww ...

  9. Notepad++列编辑

    NotePad++列编辑 工具:Notepad++使用说明:在我们的日常工作中,经常会碰到要修改多行记录,一行行去处理会非常浪费人力,这时候列编辑就是一个很好的解决方法,列编辑在进行数据批量操作时是一 ...

  10. split-brain 脑裂问题(Keepalived)

    脑裂(split-brain)指在一个高可用(HA)系统中,当联系着的两个节点断开联系时,本来为一个整体的系统,分裂为两个独立节点,这时两个节点开始争抢共享资源,结果会导致系统混乱,数据损坏.对于无状 ...