【AGC010D】Decrementing
Solution
日常博弈论做不出来。
首先,数值全部为1的局面先手必败。
在接下来的过程中,我们只关注那些大于1的数值。
按照官方题解的思路,首先想一个简化版的问题:没有除的操作,其余相同。那么局面结果显然和所有值的和的奇偶性有关。
回到原问题。我们发现,当局面中有2个或更多奇数,其余为偶数时,我们对任意一个元素进行一次完整操作,仅仅会将一个元素从奇变偶,或从偶变奇。原因?只要有奇数存在,所有数的GCD必定是奇数。所以当全局除以GCD时,奇数还是奇数,偶数还是偶数,因为它们的2没有被除去。不论操作的是偶数还是奇数,都必定会留下至少一个奇数存在。因此变动也就只发生在操作的数上。暂且称之为A性质。
如果先手手上全是奇数,那么必败。全1时显然必败。根据A,先手对任意数进行操作,将会出现一个偶数,那么后手可以把这个偶数变回奇数。如此反复,必定先手败。
根据题目给的性质:初始时GCD为1。这意味着初始局面必定有1个或以上的奇数。
接下来,对局面按偶数的个数分类:
(1)有奇数个偶数:必胜。证明:先手先操作一个偶数,那么此时局面中有2+个奇数,以及偶数个偶数,符合A,则变化只发生在操作数上。如果后手操作一个偶数变奇数,那么先手再操作一个奇数变偶数;如果后手操作一个奇数变成偶数,那么先手可以再操作这个数变成奇数(既然后手能操作,那么操作前数肯定\(\ge 3\))。如此进行,某个时刻后手操作前将会有没有偶数,即全为奇数。我们已经证明此时先手必败。
(2)有偶数个偶数:如果没有奇数,先手任意操作时,-1后出现一个奇数,大概理解为满足A,则都会使得后手有(1)的局面,即先手必败。如果有2+个奇数,此时满足A,先手任做一次操作,都会使后手有(1),先手必败。如果恰好有1个奇数,这时候我们无法推理什么,但是此时我们发现,如果先手操作某一个偶数,那么就直接输了,所以先手只有1种选择:操作那个奇数。于是问题就变成模拟了。我们递归处理,直到遇到上述情况位置。由于每次GCD至少是2,于是层数就是\(\mathcal O(\log)\)的。
在这稍微总结一下:博弈论题一般是要发现一些逼迫方法,并从这些角度来考虑必胜策略。
Code
#include <cstdio>
#include <iostream>
using namespace std;
namespace IO{/*{{{*/
const int S=10000000;
char buf[S];
int pos;
void load(){
fread(buf,1,S,stdin);
pos=0;
}
char getChar(){
return buf[pos++];
}
int getInt(){
int x=0,f=1;
char c=getChar();
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getChar();}
while('0'<=c&&c<='9'){x=x*10+c-'0';c=getChar();}
return x*f;
}
}/*}}}*/
using IO::getInt;
const int N=100005;
int n;
int a[N];
void readData(){
n=getInt();
for(int i=1;i<=n;i++)
a[i]=getInt();
}
int gcd(int x,int y){
if(x<y) swap(x,y);
for(int z=x%y;z;x=y,y=z,z=x%y);
return y;
}
void simulate(int who){
static int sum[2],oddpos;
bool all1flag=true;
sum[0]=sum[1]=0;
for(int i=1;i<=n;i++)
if(a[i]!=1){
all1flag=false;
sum[a[i]&1]++;
if(a[i]&1)
oddpos=i;
}
if(all1flag)
throw who^1;
if(sum[0]&1)
throw who;
if(sum[1]>1)
throw who^1;
if(sum[1]==0)
throw who^1;
a[oddpos]--;
int g=-1;
for(int i=1;i<=n;i++)
if(a[i]!=1){
if(g==-1)
g=a[i];
else
g=gcd(g,a[i]);
}
for(int i=1;i<=n;i++)
if(a[i]!=1)
a[i]/=g;
simulate(who^1);
}
int main(){
IO::load();
readData();
try{
simulate(1);
}
catch(int e){
puts(e?"First":"Second");
}
return 0;
}
【AGC010D】Decrementing的更多相关文章
- Python高手之路【六】python基础之字符串格式化
Python的字符串格式化有两种方式: 百分号方式.format方式 百分号的方式相对来说比较老,而format方式则是比较先进的方式,企图替换古老的方式,目前两者并存.[PEP-3101] This ...
- 【原】谈谈对Objective-C中代理模式的误解
[原]谈谈对Objective-C中代理模式的误解 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 这篇文章主要是对代理模式和委托模式进行了对比,个人认为Objective ...
- 【原】FMDB源码阅读(三)
[原]FMDB源码阅读(三) 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 FMDB比较优秀的地方就在于对多线程的处理.所以这一篇主要是研究FMDB的多线程处理的实现.而 ...
- 【原】Android热更新开源项目Tinker源码解析系列之一:Dex热更新
[原]Android热更新开源项目Tinker源码解析系列之一:Dex热更新 Tinker是微信的第一个开源项目,主要用于安卓应用bug的热修复和功能的迭代. Tinker github地址:http ...
- 【调侃】IOC前世今生
前些天,参与了公司内部小组的一次技术交流,主要是针对<IOC与AOP>,本着学而时习之的态度及积极分享的精神,我就结合一个小故事来初浅地剖析一下我眼中的“IOC前世今生”,以方便初学者能更 ...
- Python高手之路【三】python基础之函数
基本数据类型补充: set 是一个无序且不重复的元素集合 class set(object): """ set() -> new empty set object ...
- Python高手之路【一】初识python
Python简介 1:Python的创始人 Python (英国发音:/ˈpaɪθən/ 美国发音:/ˈpaɪθɑːn/), 是一种解释型.面向对象.动态数据类型的高级程序设计语言,由荷兰人Guido ...
- 【开源】简单4步搞定QQ登录,无需什么代码功底【无语言界限】
说17号发超简单的教程就17号,qq核审通过后就封装了这个,现在放出来~~ 这个是我封装的一个开源项目:https://github.com/dunitian/LoTQQLogin ————————— ...
- 【原】FMDB源码阅读(二)
[原]FMDB源码阅读(二) 本文转载请注明出处 -- polobymulberry-博客园 1. 前言 上一篇只是简单地过了一下FMDB一个简单例子的基本流程,并没有涉及到FMDB的所有方方面面,比 ...
随机推荐
- POJ1850&&1019&&1942
这三道题都水的难以想象,所以就放在一起写 1850 题目大意:有一种一种序列排列方式(如同题目中给出的例子),然后给你一个序列,问你这个序列的排名 首先我们先判断无解的情况,这个就很简单了. 由于题目 ...
- cp 命令有坑
cp 是个很常用的命令, 基本语法为 cp -v a b 把文件a 复制为文件b(-v为显示做了什么,这是非常安全的做法,建议新手添加此参数) 参数说明: -a:此选项通常在复制目录时使用, ...
- .NET Core在类库中读取配置文件appsettings.json
在.NET Framework框架时代我们的应用配置内容一般都是写在Web.config或者App.config文件中,读取这两个配置文件只需要引用System.Configuration程序集,分别 ...
- [译]通往 Java 函数式编程的捷径
原文地址:An easier path to functional programming in Java 原文作者:Venkat Subramaniam 译文出自:掘金翻译计划 以声明式的思想在你的 ...
- 分布式监控系统Zabbix-添加windows监控主机
大多数情况下,线上服务器都是linux系统,但是偶尔也会有些windows机器.下面简单介绍下zabbix添加windows监控机的操作:1)下载windows的zabbix_agent下载地址:ht ...
- Linux下DNS简单部署(主从域名服务器)
一.DNS简介DNS(Domain Name System),域名系统,因特网上作为域名和IP地址相互映射的一个分布式数据库,能够使用户更方便的访问互联网,而不用去记住能够被机器直接读取的IP数串.通 ...
- linux-文件数据操作awk命令
最后一列是:交互外壳 单引号里的内容不会被bash扩展 cut 同样可以做到 "\t" 制表符 cut 和 sed 结合同样可以实现 扩展:匿名方法可以有多个,and方法只能有一个 ...
- 后台跑包方法 断开ssh程序也能继续执行的方法screen命令
aircrack-ng -w 字典路径 握手包路径 screen -S 001创建会话 screen -ls 列出窗口列表 screen -r 5位数字 进入会话指令 如果会话恢复不了,则是有可能 ...
- c++入门之关于cin,cout以及数据流的认识
- [ERROR] Failed to execute goal org.codehaus.mojo:gwt-maven-plugin:2.5.0-rc1:compile (default) on project zeus-web: Command 解决
在编译maven项目,打包maven packeage -Dmaven.test.skip=TRUE时,报错“[ERROR] Failed to execute goal org.codehaus.m ...