转自http://www.alidata.org/archives/622

使用Hive可以高效而又快速地编写复杂的MapReduce查询逻辑。但是某些情况下,因为不熟悉数据特性,或没有遵循Hive的优化约定,Hive计算任务会变得非常低效,甚至无法得到结果。一个”好”的Hive程序仍然需要对Hive运行机制有深入的了解。

有一些大家比较熟悉的优化约定包括:Join中需要将大表写在靠右的位置;尽量使用UDF而不是transfrom……诸如此类。下面讨论5个性能和逻辑相关的问题,帮助你写出更好的Hive程序。

全排序

Hive的排序关键字是SORT BY,它有意区别于传统数据库的ORDER BY也是为了强调两者的区别–SORT BY只能在单机范围内排序。考虑以下表定义:

CREATE TABLE if not exists t_order(  id int, -- 订单编号  sale_id int, -- 销售ID  customer_id int, -- 客户ID  product _id int, -- 产品ID  amount int -- 数量  ) PARTITIONED BY (ds STRING);

在表中查询所有销售记录,并按照销售ID和数量排序:

set mapred.reduce.tasks=2;  Select sale_id, amount from t_order  Sort by sale_id, amount;

这一查询可能得到非期望的排序。指定的2个reducer分发到的数据可能是(各自排序):

Reducer1:

Sale_id | amount  0 | 100  1 | 30  1 | 50  2 | 20

Reducer2:

Sale_id | amount  0 | 110  0 | 120  3 | 50  4 | 20

因为上述查询没有reduce key,hive会生成随机数作为reduce key。这样的话输入记录也随机地被分发到不同reducer机器上去了。为了保证reducer之间没有重复的sale_id记录,可以使用DISTRIBUTE BY关键字指定分发key为sale_id。改造后的HQL如下:

set mapred.reduce.tasks=2;  Select sale_id, amount from t_order  Distribute by sale_id  Sort by sale_id, amount;

这样能够保证查询的销售记录集合中,销售ID对应的数量是正确排序的,但是销售ID不能正确排序,原因是hive使用hadoop默认的HashPartitioner分发数据。

这就涉及到一个全排序的问题。解决的办法无外乎两种:

1.) 不分发数据,使用单个reducer:

set mapred.reduce.tasks=1;

这一方法的缺陷在于reduce端成为了性能瓶颈,而且在数据量大的情况下一般都无法得到结果。但是实践中这仍然是最常用的方法,原因是通常排序的查询是为了得到排名靠前的若干结果,因此可以用limit子句大大减少数据量。使用limit n后,传输到reduce端(单机)的数据记录数就减少到n* (map个数)。

2.) 修改Partitioner,这种方法可以做到全排序。这里可以使用Hadoop自带的TotalOrderPartitioner(来自于Yahoo!的TeraSort项目),这是一个为了支持跨reducer分发有序数据开发的Partitioner,它需要一个SequenceFile格式的文件指定分发的数据区间。如果我们已经生成了这一文件(存储在/tmp/range_key_list,分成100个reducer),可以将上述查询改写为

set mapred.reduce.tasks=100;  set hive.mapred.partitioner=org.apache.hadoop.mapred.lib.TotalOrderPartitioner;  set total.order.partitioner.path=/tmp/ range_key_list;  Select sale_id, amount from t_order  Cluster by sale_id  Sort by amount;

有很多种方法生成这一区间文件(例如hadoop自带的o.a.h.mapreduce.lib.partition.InputSampler工具)。这里介绍用Hive生成的方法,例如有一个按id有序的t_sale表:

CREATE TABLE if not exists t_sale (  id int,  name string,  loc string  );

则生成按sale_id分发的区间文件的方法是:

create external table range_keys(sale_id int)  row format serde  'org.apache.hadoop.hive.serde2.binarysortable.BinarySortableSerDe'  stored as  inputformat  'org.apache.hadoop.mapred.TextInputFormat'  outputformat  'org.apache.hadoop.hive.ql.io.HiveNullValueSequenceFileOutputFormat'  location '/tmp/range_key_list';     insert overwrite table range_keys  select distinct sale_id  from source t_sale sampletable(BUCKET 100 OUT OF 100 ON rand()) s  sort by sale_id;

生成的文件(/tmp/range_key_list目录下)可以让TotalOrderPartitioner按sale_id有序地分发reduce处理的数据。区间文件需要考虑的主要问题是数据分发的均衡性,这有赖于对数据深入的理解。

怎样做笛卡尔积?

当Hive设定为严格模式(hive.mapred.mode=strict)时,不允许在HQL语句中出现笛卡尔积,这实际说明了Hive对笛卡尔积支持较弱。因为找不到Join key,Hive只能使用1个reducer来完成笛卡尔积。

当然也可以用上面说的limit的办法来减少某个表参与join的数据量,但对于需要笛卡尔积语义的需求来说,经常是一个大表和一个小表的Join操作,结果仍然很大(以至于无法用单机处理),这时MapJoin才是最好的解决办法。

MapJoin,顾名思义,会在Map端完成Join操作。这需要将Join操作的一个或多个表完全读入内存。

MapJoin的用法是在查询/子查询的SELECT关键字后面添加/*+ MAPJOIN(tablelist) */提示优化器转化为MapJoin(目前Hive的优化器不能自动优化MapJoin)。其中tablelist可以是一个表,或以逗号连接的表的列表。tablelist中的表将会读入内存,应该将小表写在这里。

PS:有用户说MapJoin在子查询中可能出现未知BUG。在大表和小表做笛卡尔积时,规避笛卡尔积的方法是,给Join添加一个Join key,原理很简单:将小表扩充一列join key,并将小表的条目复制数倍,join key各不相同;将大表扩充一列join key为随机数。

怎样写exist in子句?

Hive不支持where子句中的子查询,SQL常用的exist in子句需要改写。这一改写相对简单。考虑以下SQL查询语句:

SELECT a.key, a.value  FROM a  WHERE a.key in  (SELECT b.key  FROM B);

可以改写为

SELECT a.key, a.value  FROM a LEFT OUTER JOIN b ON (a.key = b.key)  WHERE b.key <> NULL;

一个更高效的实现是利用left semi join改写为:

SELECT a.key, a.val  FROM a LEFT SEMI JOIN b on (a.key = b.key);

left semi join是0.5.0以上版本的特性。

Hive怎样决定reducer个数?

Hadoop MapReduce程序中,reducer个数的设定极大影响执行效率,这使得Hive怎样决定reducer个数成为一个关键问题。遗憾的是Hive的估计机制很弱,不指定reducer个数的情况下,Hive会猜测确定一个reducer个数,基于以下两个设定:

1. hive.exec.reducers.bytes.per.reducer(默认为1000^3)

2. hive.exec.reducers.max(默认为999)

计算reducer数的公式很简单:

N=min(参数2,总输入数据量/参数1)

通常情况下,有必要手动指定reducer个数。考虑到map阶段的输出数据量通常会比输入有大幅减少,因此即使不设定reducer个数,重设参数2还是必要的。依据Hadoop的经验,可以将参数2设定为0.95*(集群中TaskTracker个数)。

合并MapReduce操作

Multi-group by

Multi-group by是Hive的一个非常好的特性,它使得Hive中利用中间结果变得非常方便。例如,

FROM (SELECT a.status, b.school, b.gender  FROM status_updates a JOIN profiles b  ON (a.userid = b.userid and  a.ds='2009-03-20' )  ) subq1  INSERT OVERWRITE TABLE gender_summary  PARTITION(ds='2009-03-20')  SELECT subq1.gender, COUNT(1) GROUP BY subq1.gender  INSERT OVERWRITE TABLE school_summary  PARTITION(ds='2009-03-20')  SELECT subq1.school, COUNT(1) GROUP BY subq1.school 

上述查询语句使用了Multi-group by特性连续group by了2次数据,使用不同的group by key。这一特性可以减少一次MapReduce操作。

Multi-distinct

Multi-distinct是淘宝开发的另一个multi-xxx特性,使用Multi-distinct可以在同一查询/子查询中使用多个distinct,这同样减少了多次MapReduce操作。

写好Hive 程序的五个提示的更多相关文章

  1. 写好Hive 程序的若干优化技巧和实际案例

    使用Hive可以高效而又快速地编写复杂的MapReduce查询逻辑.但是一个”好”的Hive程序需要对Hive运行机制有深入的了解,像理解mapreduce作业一样理解Hive QL才能写出正确.高效 ...

  2. sbt打包Scala写的Spark程序,打包正常,提交运行时提示找不到对应的类

    sbt打包Scala写的Spark程序,打包正常,提交运行时提示找不到对应的类 详述 使用sbt对写的Spark程序打包,过程中没有问题 spark-submit提交jar包运行提示找不到对应的类 解 ...

  3. 学了C语言,如何利用CURL写一个下载程序?—用nmake编译CURL并安装

    在这一系列的前一篇文章学了C语言,如何为下载狂人写一个磁盘剩余容量监控程序?中,我们为下载狂人写了一个程序来监视磁盘的剩余容量,防止下载的东西撑爆了硬盘.可是,这两天,他又抱怨他的下载程序不好用,让我 ...

  4. 如何用OS X的Xcode写C语言程序

    声明:以下内容非本人原创,转载于别处.拿出来只是分享给FY们,不喜勿喷!原创地址http://blog.yorkxin.org/posts/2009/03/15/fundamental-c-with- ...

  5. 不要困在自己建造的盒子里——写给.NET程序员(附精彩评论)

    此文章的主旨是希望过于专注.NET程序员在做好工作.写好.NET程序的同时,能分拨出一点时间接触一下.NET之外的东西(例如10%-20%的时间),而不是鼓动大家什么都去学最后什么都学不精,更不是说. ...

  6. 用tkinter写一个记事本程序(未完成)

    之前在看tkinter与python编程 ,后面学opengl就把那本书搁置了.几天没用tkinter,怕是基本的创建组件那些都忘记了,所以想着用tkinter试着写一下记事本程序.一开始的时候以为很 ...

  7. python应用(2):写个python程序给自己用

    用python写一个程序,然后在命令行上执行,看不到界面(UI),这种程序很常见了,叫命令行程序.然而很多人,特别是不懂程序的人,更需要看到的是一个有界面的,能通过鼠标操作的程序,毕竟已经迈进&quo ...

  8. 写一个ajax程序就是如此简单

    写一个ajax程序就是如此简单 ajax介绍: 1:AJAX全称为Asynchronous JavaScript and XML(异步JavaScript和XML),指一种创建交互式网页应用的网页开发 ...

  9. 写window应用程序日志System.Diagnostics.EventLog.WriteEntry

    System.Diagnostics.EventLog.WriteEntry( MySource , Writing to event log. ); 可以写window应用程序日志 查看的地方:右击 ...

随机推荐

  1. SPOJ 416 Divisibility by 15 细节题

    一个结论:一个数,如果它的所有数字之和能被3整除,那么这个数也能被3整除. 最后一位肯定是0或者5,如果没有就impossible. 剩下的就是,如何删除尽量少的数,使所有数字之和为3的倍数. 情况比 ...

  2. sql 随笔 2015-08-07

    xls 导入数据库 --删除现有数据 DELETE FROM dbo.PhoneList --插入数据 insert into dbo.PhoneList --读取xls数据 ) , as [Enab ...

  3. HDOJ ——统计难题

    统计难题 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131070/65535 K (Java/Others)Total Submi ...

  4. CCNU-线段树练习题-A-单点更新1

    A - 单点更新1 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit Status Des ...

  5. STL笔记(6)标准库:标准库中的排序算法

    STL笔记(6)标准库:标准库中的排序算法 标准库:标准库中的排序算法The Standard Librarian: Sorting in the Standard Library Matthew A ...

  6. HeadFirst Jsp 11 (部署WEB应用)

    web 应用的目录结构要求很严, 各个内容只能放在它该放的地方, 所以, 移动一个web应用很让人头疼. 不过还是有办法, WAR文件, 代表web 归档, WAR其实就是一个JAR归档. 建立 WA ...

  7. Less tips:声明变量之前可以引用变量!

    Less中的variable可以在使用之后才被声明,这一特性对于希望覆盖前期声明的(比如bootstrap等第三方library的variable)变量,从而优雅地 使用你希望的效果提供了便利. 比如 ...

  8. R语言实战读书笔记(三)图形初阶

    这篇简直是白写了,写到后面发现ggplot明显更好用 3.1 使用图形 attach(mtcars)plot(wt, mpg) #x轴wt,y轴pgabline(lm(mpg ~ wt)) #画线拟合 ...

  9. Balsamiq Mockups简单介绍(UI草图绘制工具)

    什么是Balsamiq Mockups Balsamiq Mockups出自加利福尼亚州的Balsamiq工作室,创始人Peldi在2008年6月推出了这款手绘风格的产品原型设计工具,并广受好评.2年 ...

  10. HDU 2147 (博弈) kiki's game

    无奈英语不好又被坑,看到棋子能左移下移左下移,想当然地以为是Wythoff博弈了,=u= 题的意思是说每次只能选一个方向移动一步,所以找找规律就是横纵坐标为奇数的时候是必败状态. 从http://ww ...