这两道题差不多,POJ这道我很久以前就做过,但是比赛的时候居然没想起来。。

POJ 这道题的题意是,N个王子每个人都有喜欢的公主,当他们选定一个公主结婚时,必须是的剩下的人也能找到他喜欢的公主结婚。

思路,首先对于王子,对于每一个他喜欢的公主,直接连边,然后再根据已经给出的匹配方案,建立公主->王子的边。

最后求出SCC后在同一强联通分量里的王子和公主就可以了。

代码就不贴了

下面再讲一下HDU 4685这道题,两道题的唯一区别就是,上一道题,每个公主到王子的匹配方案都是给出的,是一定存在的,那是因为公主和王子的个数是相同的。

但是这道题公主和王子的个数不同,就无法做到两两匹配,必然存在光棍的情况。

光棍其实挺正常的,但是对于这道题,我们就需要虚拟一些王子和公主出来。

一个王子没有匹配的话,那么虚拟一个公主出来,表示所有的王子都喜欢这个公主,同理虚拟出王子的情况。

那么在求出匹配之后,我们就可以根据这些匹配来建立公主->王子的边,然后操作就和上一题一样了。

代码:

#include <set>
#include <map>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <string>
#include <vector>
#include <iomanip>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <ctime>
#define Max 2505
#define FI first
#define SE second
#define ll long long
#define PI acos(-1.0)
#define inf 0x3fffffff
#define LL(x) ( x << 1 )
#define bug puts("here")
#define PII pair<int,int>
#define RR(x) ( x << 1 | 1 )
#define mp(a,b) make_pair(a,b)
#define mem(a,b) memset(a,b,sizeof(a))
#define REP(i,s,t) for( int i = ( s ) ; i <= ( t ) ; ++ i ) using namespace std; inline void RD(int &ret) {
char c;
int flag = 1 ;
do {
c = getchar();
if(c == '-')flag = -1 ;
} while(c < '0' || c > '9') ;
ret = c - '0';
while((c=getchar()) >= '0' && c <= '9')
ret = ret * 10 + ( c - '0' );
ret * flag ;
} inline void OT(int a) {
if(a >= 10)OT(a / 10) ;
putchar(a % 10 + '0') ;
} inline void OT(double a) {
char x[111] ;
sprintf(x , "%f" , a) ;
printf("%s\n",x) ;
}
inline void RD(double &ret) {
char c ;
int flag = 1 ;
do {
c = getchar() ;
if(c == '-')flag = -1 ;
} while(c < '0' || c > '9') ;
ll fuck1 = c - '0' ;
while((c = getchar()) >= '0' && c <= '9') {
fuck1 = fuck1 * 10 + c - '0' ;
}
ll fuck2 = 1 ;
while((c = getchar()) >= '0' && c <= '9') {
fuck1 = fuck1 * 10 + c - '0' ;
fuck2 *= 10 ;
}
ret = flag * (double)fuck1 / (double)(fuck2) ;
}
/***************************************************/
#define N 2005
int n , m ;
int fk[N] ;
int vis[N] ;
struct kdq {
int s , e , next ;
} ed[N * N] ;
int head[N] , num = 0 ;
int nn ;
int linkx[N] ,linky[N] ;
vector<int>G[N] ;
void add(int s ,int e) {
ed[num].s = s ;
ed[num].e = e ;
ed[num].next = head[s] ;
head[s] = num ++ ;
} int dfs(int now) {
int sz = G[now].size() ;
for (int i = 0 ; i < sz ; i ++ ) {
int e = G[now][i] ;
if(!vis[e]) {
vis[e] = 1 ;
if(linky[e] == -1 || dfs(linky[e])) {
linky[e] = now ;
linkx[now] = e ;
return 1 ;
}
}
}
return 0 ;
} //tarjan_define
int low[N] , dfn[N] , st[N] , belong[N] ;
int top , dp ,SCC ; void tarjan(int now) {
vis[now] = 1 ;
st[top ++ ] = now ;
dfn[now] = low[now] = dp ++ ;
for (int i = head[now] ; i != -1 ; i = ed[i].next ) {
int v = ed[i].e ;
if(dfn[v] == -1) {
tarjan(v) ;
low[now] = min(low[now] ,low[v]) ;
} else if(vis[v]) {
low[now] = min(low[now] ,dfn[v]) ;
}
}
if(low[now] == dfn[now]) {
int xx ;
SCC ++ ;
do {
xx = st[-- top ] ;
vis[xx] = 0 ;
belong[xx] = SCC ;
} while(xx != now) ;
}
} //init
void init() {
mem(linkx ,-1) ;
mem(linky ,-1) ;
mem(vis, 0) ;
mem(low,0) ;
mem(dfn ,-1) ;
mem(st ,0) ;
mem(head ,-1) ;
num = top = dp = SCC = 0 ;
}
int main() {
int T ;
#ifndef ONLINE_JUDGE
freopen("D:\\fuck.txt","r",stdin) ;
#endif
cin >> T ;
int ca = 0 ;
while(T -- ) {
RD(n) ;
RD(m) ;
int nfk = max(m , n) ;
init() ;
for (int i = 0 ; i <= N >> 1 ; i ++ ) {
G[i].clear() ;
} REP(i , 1 , n ) {
int x ;
RD(x) ;
while(x -- ) {
int y ;
RD(y) ;
add(i , nfk + y) ;
G[i].push_back(nfk + y) ;
}
}
nn = 0 ;
for (int i = 1 ; i <= nfk ; i ++ ) {
mem(vis ,0) ;
nn += dfs(i) ;
}
nn = 2 * nfk ;
for (int i = 1 ; i <= nfk ; i ++ ) { //虚拟公主
if(linkx[i] == -1) {
linkx[i] = ++ nn ;
linky[nn] = i ;
for (int j = 1 ; j <= nfk ; j ++ ) { //所有王子都喜欢这个公主
add(j , nn) ;
}
}
add(linkx[i] , i) ;
}
for (int i = nfk + 1 ; i <= nfk << 1 ; i ++ ) { //虚拟王子
if(linky[i] == -1) {
linkx[++ nn] = i ;
linky[i] = nn ;
for (int j = nfk + 1 ; j <= nfk + nfk ; j ++ ) { //这个王子喜欢所有公主
add(nn , j) ;
}
}
add(i , linky[i]) ;
}
mem(vis, 0) ;
for (int i = 1 ; i <= nn ; i ++ ) {
if(dfn[i] == -1)tarjan(i) ;
}
printf("Case #%d:\n",++ ca) ;
set<int>fk ;
__typeof(fk.begin()) it ;
for (int i = 1 ; i <= n ; i ++ ) {
fk.clear() ;
for (int j = head[i] ; ~j ; j = ed[j].next ) {
int x = belong[i] ;
int y = belong[ed[j].e] ;
if(x == y && ed[j].e <= nfk + m) {
fk.insert(ed[j].e - nfk) ;
}
}
printf("%d",fk.size()) ;
for (it = fk.begin() ; it != fk.end() ; it ++) {
printf(" %d",*it) ;
}
puts("") ;
}
}
return 0 ;
}

POJ 1904 HDU 4685的更多相关文章

  1. hdu 4685 二分匹配+强连通分量

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4685 题解: 这一题是poj 1904的加强版,poj 1904王子和公主的人数是一样多的,并且给出 ...

  2. hdu 4685(强连通分量+二分图)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4685 题意:n个王子和m个公主,王子只能和他喜欢的公主结婚,公主可以和所有的王子结婚,输出所有王子可能 ...

  3. poj 1904(强连通分量+输入输出外挂)

    题目链接:http://poj.org/problem?id=1904 题意:有n个王子,每个王子都有k个喜欢的妹子,每个王子只能和喜欢的妹子结婚,大臣给出一个匹配表,每个王子都和一个妹子结婚,但是国 ...

  4. HDU 4685 Prince and Princess 二分图匹配+tarjan

    Prince and Princess 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=4685 Description There are n pri ...

  5. hdu 4685(强连通分量+二分图的完美匹配)

    传送门:Problem 4685 https://www.cnblogs.com/violet-acmer/p/9739990.html 参考资料: [1]:二分图的最大匹配.完美匹配和匈牙利算法 [ ...

  6. POJ 2104&HDU 2665 Kth number(主席树入门+离散化)

    K-th Number Time Limit: 20000MS   Memory Limit: 65536K Total Submissions: 50247   Accepted: 17101 Ca ...

  7. poj 1251 poj 1258 hdu 1863 poj 1287 poj 2421 hdu 1233 最小生成树模板题

    poj 1251  && hdu 1301 Sample Input 9 //n 结点数A 2 B 12 I 25B 3 C 10 H 40 I 8C 2 D 18 G 55D 1 E ...

  8. Eight POJ - 1077 HDU - 1043 八数码

    Eight POJ - 1077 HDU - 1043 八数码问题.用hash(康托展开)判重 bfs(TLE) #include<cstdio> #include<iostream ...

  9. POJ 1177/HDU 1828 picture 线段树+离散化+扫描线 轮廓周长计算

    求n个图矩形放下来,有的重合有些重合一部分有些没重合,求最后总的不规则图型的轮廓长度. 我的做法是对x进行一遍扫描线,再对y做一遍同样的扫描线,相加即可.因为最后的轮廓必定是由不重合的线段长度组成的, ...

随机推荐

  1. 关于Web服务器域名设置相关知识积累

    1.第一个问题,如何将一个服务器映射到一个域名上呢?    在申请域名的时候,会配置服务器IP和域名的对应关系,所以如果系统中只有一个应用的情况下,应用服务器不需要做任何配置. 2.在Tomcat服务 ...

  2. Poj 1222 EXTENDED LIGHTS OUT

    题目大意:给你一个5*6的格子,每个格子中有灯(亮着1,暗着0),每次你可以把一个暗的点亮(或者亮的熄灭)然后它上下左右的灯也会跟着变化.最后让你把所有的灯熄灭,问你应该改变哪些灯. 首先我们可以发现 ...

  3. 【BZOJ】【2480】【SPOJ 3105】Mod

    扩展BSGS Orz zyf……然而他的题解对AC大神的题解作了引用……而坑爹的百度云……呵呵了... 扩展BSGS模板题 /************************************* ...

  4. Least Common Ancestors 分类: ACM TYPE 2014-10-19 11:24 84人阅读 评论(0) 收藏

    #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...

  5. ID3d11asynchronous

    http://msdn.microsoft.com/en-us/library/windows/desktop/ff476428(v=vs.85).aspx 这东西 该怎么用 ! 照这位兄弟的做就可以 ...

  6. 引擎设计跟踪(九.9) 文件包系统(Game Package System)

    很早之前,闪现过写文件包系统的想法, 但是觉得还没有到时候. 由于目前工作上在做android ndk开发, 所以业余时间趁热做了android的移植, 因为android ndk提供的mountab ...

  7. 解决vsftpd日志时间问题

    解决vsftpd日志时间问题 发布时间:August 29, 2008 分类:Linux <你必须承认土也是一种艺术> <Linux下查看Apache的请求数> 最近发现vsf ...

  8. MetInfo安装

    安装MetInfo企业网站管理系统需要经历三个步骤:安装准备.上传文件.安装系统. 第一步:安装前的准备 环境要求:需要支持PHP并提供Mysql数据库的空间(虚拟主机),详细要求: 下载MetInf ...

  9. WCF分布式开发步步为赢(8):使用数据集(DataSet)、数据表(DataTable)、集合(Collection)传递数据

    数据集(DataSet).数据表(DataTable).集合(Collection)概念是.NET FrameWork里提供数据类型,在应用程序编程过程中会经常使用其来作为数据的载体,属于ADO.NE ...

  10. 545B. Equidistant String

    题目链接 输入两个只含有01的字符串,s,t 求一个字符串p使到s,t的距离一样 这里的距离是指对应位置:0-0的距离是0 ,o-1的距离是1 ,1-1的距离是0,1-0的距离是1 这里只要求找出满足 ...