http://poj.org/problem?id=1106

Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 4488   Accepted: 2379

Description

In a wireless network with multiple transmitters sending on the same frequencies, it is often a requirement that signals don't overlap, or at least that they don't conflict. One way of accomplishing this is to restrict a transmitter's coverage area. This problem uses a shielded transmitter that only broadcasts in a semicircle.

A transmitter T is located somewhere on a 1,000 square meter grid. It broadcasts in a semicircular area of radius r. The transmitter may be rotated any amount, but not moved. Given N points anywhere on the grid, compute the maximum number of points that can be simultaneously reached by the transmitter's signal. Figure 1 shows the same data points with two different transmitter rotations. 

All input coordinates are integers (0-1000). The radius is a positive real number greater than 0. Points on the boundary of a semicircle are considered within that semicircle. There are 1-150 unique points to examine per transmitter. No points are at the same location as the transmitter. 

Input

Input consists of information for one or more independent transmitter problems. Each problem begins with one line containing the (x,y) coordinates of the transmitter followed by the broadcast radius, r. The next line contains the number of points N on the grid, followed by N sets of (x,y) coordinates, one set per line. The end of the input is signalled by a line with a negative radius; the (x,y) values will be present but indeterminate. Figures 1 and 2 represent the data in the first two example data sets below, though they are on different scales. Figures 1a and 2 show transmitter rotations that result in maximal coverage.

Output

For each transmitter, the output contains a single line with the maximum number of points that can be contained in some semicircle.

Sample Input

25 25 3.5
7
25 28
23 27
27 27
24 23
26 23
24 29
26 29
350 200 2.0
5
350 202
350 199
350 198
348 200
352 200
995 995 10.0
4
1000 1000
999 998
990 992
1000 999
100 100 -2.5

Sample Output

3
4
4

Source

 
 
-----------------------------------------------------------------------------
思维不敏捷啊,还是后悔看了题解,不解释。自己先想想吧,就是叉乘的应用
 #include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <algorithm>
#include <math.h>
#define eps 1e-6
typedef struct point
{
double x,y;
}point; bool dy(double x,double y){ return x>y+eps; }
bool xy(double x,double y){ return x<y-eps; }
bool dyd(double x,double y){ return x>y-eps; }
bool xyd(double x,double y){ return x<y+eps; }
bool dd(double x,double y){ return fabs(x-y)<eps; } double crossProduct(point a,point b,point c)
{
return (c.x-a.x)*(b.y-a.y)-(c.y-a.y)*(b.x-a.x);
} double dist(point a,point b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
} point c[];
double st,en,ri;
point tmp;
int solve(int n)
{
int ans;
int maxx=;
for(int i=;i<n;i++)
{
ans=;
for(int j=;j<n;j++)
{
if(i!=j&&dyd(crossProduct(tmp,c[i],c[j]),0.0))
{
ans++;
}
}
if(ans>maxx)
{
maxx=ans;
//ans=0;
}
}
return maxx;
} int main()
{
int n;
double a,b;
while(scanf("%lf%lf%lf",&st,&en,&ri)!=EOF&&ri>=)
{
point p;
tmp.x=st;
tmp.y=en;
scanf("%d",&n);
int cas=;
for(int i=;i<n;i++)
{
scanf("%lf%lf",&p.x,&p.y);
if(xyd(dist(tmp,p),ri))
{
c[cas++]=p;
}
}
printf("%d\n",solve(cas));
}
}

poj 1106 Transmitters (叉乘的应用)的更多相关文章

  1. Poj 1106 Transmitters

    Poj 1106 Transmitters 传送门 给出一个半圆,可以任意旋转,问这个半圆能够覆盖的最多点数. 我们枚举每一个点作为必然覆盖点,那么使用叉积看极角关系即可判断其余的点是否能够与其存在一 ...

  2. poj 1106 Transmitters (枚举+叉积运用)

    题目链接:http://poj.org/problem?id=1106 算法思路:由于圆心和半径都确定,又是180度,这里枚举过一点的直径,求出这个直径的一个在圆上的端点,就可以用叉积的大于,等于,小 ...

  3. POJ 1106 Transmitters(计算几何)

    题目链接 切计算几何,感觉计算几何的算法还不熟.此题,枚举线段和圆点的直线,平分一个圆 #include <iostream> #include <cstring> #incl ...

  4. POJ 2318 TOYS (叉乘判断)

    <题目链接> 题目大意: 给出矩形4个点和n个挡板俩顶点的位置,这n个挡板将该矩形分成 n+1块区域,再给你m个点的坐标,然你输出每个区域内有几个点. 解题思路: 用叉乘即可简单判断点与直 ...

  5. poj 1106(半圆围绕圆心旋转能够覆盖平面内最多的点)

    Transmitters Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 4955   Accepted: 2624 Desc ...

  6. TOYS POJ 2318 计算几何 叉乘的应用

    Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 15060   Accepted: 7270 Description Calc ...

  7. POJ 1106

    先判断是否在圆内,然后用叉积判断是否在180度内.枚举判断就可以了... 感觉是数据弱了.. #include <iostream> #include <cstdio> #in ...

  8. [转] POJ计算几何

    转自:http://blog.csdn.net/tyger/article/details/4480029 计算几何题的特点与做题要领:1.大部分不会很难,少部分题目思路很巧妙2.做计算几何题目,模板 ...

  9. ACM计算几何题目推荐

    //第一期 计算几何题的特点与做题要领: 1.大部分不会很难,少部分题目思路很巧妙 2.做计算几何题目,模板很重要,模板必须高度可靠. 3.要注意代码的组织,因为计算几何的题目很容易上两百行代码,里面 ...

随机推荐

  1. mysql开启远程访问

    1.MySql-Server 出于安全方面考虑只允许本机(localhost, 127.0.0.1)来连接访问. 这对于 Web-Server 与 MySql-Server 都在同一台服务器上的网站架 ...

  2. HID USB设备开发技术【转】

    本文转载自: 1.高速USB和USB2.0有区别吗?     高速USB和USB2.0是有区别的,区别在于USB2.0是一种规范,而"高速USB"仅指在USB2.0规范中数据传输率 ...

  3. diff 文件比较

    测试数据: [xiluhua@vm-xiluhua][~]$ cat msn.txt aaa bbb bbb ccc ccc ddd bbb eee aaa ccc bbb sss [xiluhua@ ...

  4. PL/SQL显示行号和高亮当前行

    PL/SQL Developer 如何显示行号: PL/SQL Developer 高亮当前行: OK!

  5. HDU:过山车(二分图最大匹配)

    http://acm.hdu.edu.cn/showproblem.php?pid=2063 题意:有m个男,n个女,和 k 条边,求有多少对男女可以搭配. 思路:裸的二分图最大匹配,匈牙利算法. 枚 ...

  6. sql必知必会(第四版) 学习笔记

    还有一个<Sqlserver2008技术内幕>的笔记,也很好!~ http://www.cnblogs.com/liupeng61624/p/4354983.html 温习一遍简单的sql ...

  7. Python 深拷贝和浅拷贝

    Python中,对象的赋值,拷贝(深/浅拷贝)之间是有差异的,如果使用的时候不注意,就可能产生意外的结果. 下面本文就通过简单的例子介绍一下这些概念之间的差别. 对象赋值 直接看一段代码: will= ...

  8. 进程外session

    进程外session A  SqlServer 1.管理员身份运行cmd 2.更换目录  cd c:\Windows\Microsoft.NET\Framework\v4.0.30319> 3. ...

  9. vs2013的asp.net 管理

    iisexpress.exe /path:C:\Windows\Microsoft.NET\Framework64\v4.0.30319\ASP.NETWebAdminFiles /vpath:/AS ...

  10. php获取json文件数据并动态修改网站头部文件meta信息 --基于CI框架

    话不多说了.直接开始吧  (如果有中文.请注意json只认utf-8编码) 首先你需要有一个json文件数据 {        "index": {                ...