HDU 5317 RGCDQ (质数筛法,序列)
题意:从1~1000,000的每个自然数质因子分解,不同因子的个数作为其f 值,比如12=2*2*3,则f(12)=2。将100万个数转成他们的f值后变成新的序列seq。接下来T个例子,每个例子一个询问区间seq[L,R]。问该子序列中任意两个不同下标的数,他们的GCD值最大为多少?
思路:
(1)质因子分解,用筛法先将质数先全部出来。
(2)对每个自然数求其f值,即将其质因子分解后的不同因子个数,作为seq序列。
(3)扫一遍seq,用另一个数组记录下标i之前有多少个1、2、3、4...。因为seq序列中最大的数不超过10,所以可以统计,以方便能在O(1)内得到一个区间内有多少个值为x的元素。
(4)对于每个询问L和R,将所有元素装入新的序列中,准备求GCD。注意:相同数字不必超过2个,即新序列中的元素顶多出现2次。
#include <bits/stdc++.h>
using namespace std;
const int N=;
vector<int> prime;
bool seq[N];
int cnt[N];
int fval[N][]; void pre_cal()
{
memset(seq,,sizeof(seq));
memset(cnt,,sizeof(cnt));
memset(fval,,sizeof(fval)); for(int i=; i*i<N; i++) //所有质数都是false;
{
if(!seq[i]) continue;
for(int j=i*i; j<N; j+=i) seq[j]=;
} for(int i=; i<N; i++) if(seq[i]) prime.push_back(i); for(int i=; i<N; i++) //求f值
{
int t=i;
for(int j=; j<prime.size()&& prime[j]<i && t!=; j++)
{
if( seq[t] ) //若是质数,不用再求了
{
cnt[i]++;
break;
} if( t%prime[j]== ) cnt[i]++; //是因子
while( t%prime[j]== ) t/=prime[j]; //去掉该因子
}
} for(int i=; i<N; i++)
{
for(int j=; j<; j++) fval[i][j]=fval[i-][j];
fval[i][cnt[i]]++;
} } vector<int> val;
int cal(int L,int R)//处理询问
{
val.clear();
for(int i=; i>; i--)
{
if( fval[R][i]-fval[L-][i]> )
{
val.push_back(i);
val.push_back(i);
}
else if( fval[R][i]-fval[L-][i]== )
val.push_back(i);
}
int ans=;
for(int i=; i<val.size(); i++)
{
for(int j=i+; j<val.size(); j++)
ans=max(ans,__gcd(val[i],val[j]));
}
return ans;
}
int main()
{
freopen("input.txt", "r", stdin);
pre_cal();
int t, L, R;
cin>>t;
while(t--)
{
scanf("%d%d",&L,&R);
printf("%d\n",cal(L,R));
}
return ;
}
AC代码
HDU 5317 RGCDQ (质数筛法,序列)的更多相关文章
- hdu 5317 RGCDQ(前缀和)
题目链接:hdu 5317 这题看数据量就知道需要先预处理,然后对每个询问都需要在 O(logn) 以下的复杂度求出,由数学规律可以推出 1 <= F(x) <= 7,所以对每组(L, R ...
- HDU 5317 RGCDQ (数论素筛)
RGCDQ Time Limit: 3000MS Memory Limit: 65536KB 64bit IO Format: %I64d & %I64u Submit Status ...
- HDU 5317 RGCDQ(素数个数 多校2015啊)
题目链接:pid=5317" target="_blank">http://acm.hdu.edu.cn/showproblem.php?pid=5317 Prob ...
- hdu 5317 RGCDQ (2015多校第三场第2题)素数打表+前缀和相减求后缀(DP)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5317 题意:F(x) 表示x的不同质因子的个数结果是求L,R区间中最大的gcd( F(i) , F(j ...
- ACM学习历程—HDU 5317 RGCDQ (数论)
Problem Description Mr. Hdu is interested in Greatest Common Divisor (GCD). He wants to find more an ...
- 2015 Multi-University Training Contest 3 hdu 5317 RGCDQ
RGCDQ Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submi ...
- HDU 5317 RGCDQ
题意:f(i)表示i的质因子个数,给l和r,问在这一区间内f(i)之间任意两个数最大的最大公倍数是多少. 解法:先用筛法筛素数,在这个过程中计算f(i),因为f(i)不会超过7,所以用一个二维数组统计 ...
- 2015 HDU 多校联赛 5317 RGCDQ 筛法求解
2015 HDU 多校联赛 5317 RGCDQ 筛法求解 题目 http://acm.hdu.edu.cn/showproblem.php? pid=5317 本题的数据量非常大,測试样例多.数据 ...
- hdu 5317 合数分解+预处理
RGCDQ Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submi ...
随机推荐
- B树、B-树、B+树、B*树---转载
B树 即二叉搜索树: 1.所有非叶子结点至多拥有两个儿子(Left和Right): 2.所有结点存储一个关键字: 3.非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树: 如: B ...
- line-height 与垂直居中!
在此之前,对于line-height 与垂直居中的问题,经常碰到. 比如,图片与span在同一个box中的时候,竟然会各种偏移.要想达到理想的效果真的是各种难. 有时间,决定认真的啃一啃. 一 lin ...
- 项目上线与LOG记录
如果项目上过线的话,那你一定知道Log是多么重要. 为什么说Log重要呢?因为上线项目不允许你调试,你只能通过Log来分析问题.这时打一手好Log的重要性绝不亚于写一手好代码.项目出问题时,你要能拿出 ...
- UVA 10780 Again Prime? No Time. 分解质因子
The problem statement is very easy. Given a number n you have to determine the largest power of m,no ...
- 初始JSON
SON是一种传输数据的格式(以对象为样板,本质上就是对象,但用途有区别,对象就是本地用的,json是用来传输的 JSON的两种静态方法: 1.JSON.parse(); string --> ...
- hadoop 1 testcase运行方法
转入hadoop2.0后,逐渐忘记了之前做testcase运行的方法,记录一下: ant -Dtestcase=Test*** 如果只运行core包得testcase可以 an ...
- sql openrowset
select * from openrowset('sqloledb','ip';'user';'pwd','exec 库..过程')
- 欧拉工程第56题:Powerful digit sum
题目链接 Java程序 package projecteuler51to60; import java.math.BigInteger; import java.util.Iterator; im ...
- [iOS]集成环信SDK然后运行时候crash了-[NSBundle initWithURL:]: nil URL argument'
Crash的reason是-[NSBundle initWithURL:]: nil URL argument' 1.首先我是用cocoapods导入的环信的SDK.然后怎么运行怎么crash. 2. ...
- JMS基本概念
原文:http://blog.csdn.net/jiuqiyuliang/article/details/46701559 The Java Message Service (JMS) API is ...