题目:

Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2).


The above rectangle (with the red border) is defined by (row1, col1) = (2, 1) and (row2, col2) = (4, 3), which contains sum = 8.

Example:

Given matrix = [
[3, 0, 1, 4, 2],
[5, 6, 3, 2, 1],
[1, 2, 0, 1, 5],
[4, 1, 0, 1, 7],
[1, 0, 3, 0, 5]
] sumRegion(2, 1, 4, 3) -> 8
sumRegion(1, 1, 2, 2) -> 11
sumRegion(1, 2, 2, 4) -> 12

Note:

  1. You may assume that the matrix does not change.
  2. There are many calls to sumRegion function.
  3. You may assume that row1 ≤ row2 and col1 ≤ col2.

链接: http://leetcode.com/problems/range-sum-query-2d-immutable/

题解:

二维矩阵求Range Sum。这题我们也是用DP,不过dp的方法是: dp[i][j]等于从坐标matrix[0][0]到matrix[i - 1][j - 1]中所有元素的和。 这样我们就可以用中小学时计算矩形重叠面积的方法来计算出我们想要的结果。

Time Complexity - O(n2), Space Complexity - O(n2)。

public class NumMatrix {
private int[][] sum;
public NumMatrix(int[][] matrix) {
if(matrix == null || matrix.length == 0) {
return;
}
int rowNum = matrix.length, colNum = matrix[0].length;
sum = new int[rowNum + 1][colNum + 1]; for(int i = 1; i < sum.length; i++) {
for(int j = 1; j < sum[0].length; j++) {
sum[i][j] = sum[i - 1][j] + sum[i][j - 1] - sum[i - 1][j - 1] + matrix[i - 1][j - 1];
}
}
} public int sumRegion(int row1, int col1, int row2, int col2) {
return sum[row2 + 1][col2 + 1] - sum[row1][col2 + 1] - sum[row2 + 1][col1] + sum[row1][col1];
}
} // Your NumMatrix object will be instantiated and called as such:
// NumMatrix numMatrix = new NumMatrix(matrix);
// numMatrix.sumRegion(0, 1, 2, 3);
// numMatrix.sumRegion(1, 2, 3, 4);

Reference:

https://leetcode.com/discuss/69047/clean-and-easy-to-understand-java-solution

https://leetcode.com/discuss/69424/clean-c-solution-and-explaination-o-mn-space-with-o-1-time

https://leetcode.com/discuss/69144/c-with-helper

https://leetcode.com/discuss/69054/dp-java-solution

https://leetcode.com/discuss/69045/sharing-my-python-solution

https://leetcode.com/discuss/71297/my-java-solution-only-used-6-ms

https://leetcode.com/discuss/69611/share-my-short-java-solution

https://leetcode.com/discuss/69435/my-c-solution-o-n-2-setup-o-1-sumregion

https://leetcode.com/discuss/69141/range-sum-query-2d-mutable-c-tree-array

https://leetcode.com/discuss/69137/short-python-solution-exactly-same-that-solves-range-query

https://leetcode.com/discuss/69117/c-solution-o-1-for-sumregion-function

304. Range Sum Query 2D - Immutable的更多相关文章

  1. 【刷题-LeetCode】304. Range Sum Query 2D - Immutable

    Range Sum Query 2D - Immutable Given a 2D matrix matrix, find the sum of the elements inside the rec ...

  2. [LeetCode] 304. Range Sum Query 2D - Immutable 二维区域和检索 - 不可变

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  3. 【LeetCode】304. Range Sum Query 2D - Immutable 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 预先求和 相似题目 参考资料 日期 题目地址:htt ...

  4. [leetcode]304. Range Sum Query 2D - Immutable二维区间求和 - 不变

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  5. 304. Range Sum Query 2D - Immutable(动态规划)

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  6. leetcode 304. Range Sum Query 2D - Immutable(递推)

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  7. LeetCode 304. Range Sum Query 2D – Immutable

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  8. LeetCode 304. Range Sum Query 2D - Immutable 二维区域和检索 - 矩阵不可变(C++/Java)

    题目: Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper ...

  9. 304 Range Sum Query 2D - Immutable 二维区域和检索 - 不可变

    给定一个二维矩阵,计算其子矩形范围内元素的总和,该子矩阵的左上角为 (row1, col1) ,右下角为 (row2, col2). 上图子矩阵左上角 (row1, col1) = (2, 1) ,右 ...

随机推荐

  1. ED/EP简介

    ED:electronic Deposit,电子存折 EP:electronic Purse,电子钱包 PIN:personal identification number,个人识别码 MAC:Mes ...

  2. 格式化输出[parts/iomanip]

    /* 用ios类中的成员函数来进行IO格式的控制总需要写一条单独的语句,而不能直接嵌入到IO语句中,显得很不方便,因此C++又提供了一种用操作符来控制IO的格式.操作符分为带参和不带参两种,带参的定义 ...

  3. 如何写一个漂亮的Liferay Theme 6.2

    只要你看到的.想做出来的页面,都可以通过liferay theme来实现,至于具体实现凡方式,那就见仁见智了. 下面,我将介绍如何快速地建一个简单漂亮的liferay theme. 工具:lifera ...

  4. 如何实现SAP的RFC函数调用(原创)

    连接sap系统需要通过sap javaconnect来连接,对于sapjco.jar系列文件有32位与64位之分[32位用的JAR版本是 2.1.10 (2011-05-10) ,64位用的JAR版本 ...

  5. makefile常用函数

    标签(空格分隔): makefile 1.字符串替换和分析函数 $(subst from,to,text) #在文本"text"中使用"to"替换每一处&quo ...

  6. 为什么匿名内部类参数必须为final类型(转载)

    为什么匿名内部类参数必须为final类型转自于:http://feiyeguohai.iteye.com/blog/1500108 1)  从程序设计语言的理论上:局部内部类(即:定义在方法中的内部类 ...

  7. bzoj 2743 树状数组离线查询

    我们按照询问的右端点排序,然后对于每一个位置,记录同颜色 上一个出现的位置,每次将上上位置出现的+1,上次出现的-1,然后 用树状数组维护就好了 /************************** ...

  8. max_flow(Edmond_Karp) 分类: ACM TYPE 2014-09-02 10:47 92人阅读 评论(0) 收藏

    #include <cstdio> #include <iostream> #include <cstring> #include<queue> usi ...

  9. 来自平时工作中的css知识的积累---持续补充中

    ① 现代浏览器中,<img>元素默认情况下底部会有空白,那么这个空白到底是从哪里来的? 解惑: method-one:猛戳 来自知乎的解答 method-two: 延伸阅读 what is ...

  10. 使用开关、分段控件和web视图

    #import "XViewController.h" @interface XViewController () @end @implementation XViewContro ...