题意:有三个兵种R,G,C,选取N个排成一列,要求G至少有M个连续的,R至多有K个连续的,问有多少种排列方式。

此题与UVa 10328 - Coin Toss非常相似,都是问某个字符连续出现的种数。题中问至少连续的排列个数可以转化为至多连续来计算,但是难点在于这次需要算两个连续的兵种,而且有三个兵种。

试着从那个题的角度考虑,最终的答案可以是这样:N个士兵中,G至多连续N个、R至多连续K个的排列个数 减去 G至多连续M-1个、R至多连续K个的排列个数。

我们要考虑计算的时候G与R是否相互影响,这样需要分开表示。

设dp[i][j]表示前i个士兵,当第i个士兵是第j种兵(假设R:0,G:1,C:2)时,G至多连续u个、R至多连续v个的排列个数。

对于不作要求的C士兵,它可以由第i-1阶段的三种士兵任意转移:dp[i][2]=dp[i-1][0]+dp[i-1][1]+dp[i-1][2]。

对于G种兵,当i<=u时,无论怎么转移都不会出现非法状态:dp[i][0]=dp[i-1][0]+dp[i-1][1]+dp[i-1][2]。

当i==u+1,这个时候非法状态是从第1个位置到第u个位置全都是G,只有这一种情况,dp[i][0]=dp[i-1][0]+dp[i-1][1]+dp[i-1][2]-1。

当i>u+1,此时非法状态是从第i-u个位置到第u个位置全都是G,这种状态可以第i-u-1个位置是R和C的状态转移而来,dp[i][0]=dp[i-1][0]+dp[i-1][1]+dp[i-1][2]-dp[i-u-1][1]-dp[i-u-1][2]。

对于R种兵,与G种兵类似,当i<=v时,无论怎么转移都不会出现非法状态:dp[i][1]=dp[i-1][0]+dp[i-1][1]+dp[i-1][2]。

当i==v+1,这个时候非法状态是从第1个位置到第v个位置全都是R,只有这一种情况,dp[i][1]=dp[i-1][0]+dp[i-1][1]+dp[i-1][2]-1。

当i>v+1,此时非法状态是从第i-u个位置到第v个位置全都是R,这种状态可以第i-v-1个位置是G和C的状态转移而来,dp[i][1]=dp[i-1][0]+dp[i-1][1]+dp[i-1][2]-dp[i-v-1][0]-dp[i-v-1][2]。

初始化,dp[0][0]=1,dp[0][1]=dp[0][2]=0;

这样,我们令u分别等于N和m-1,v等于k,进行两次递推,得到的结果相减即是答案。

注意减法可能出现负数,取模的时候要特别处理一下。

 #include<iostream>
 #include<vector>
 #include<cmath>
 #include<cstdio>
 #define MOD 1000000007
 #define ll long long
 using namespace std;
 ll dp[][];
 int main()
 {
     int n,m,k;
     while(scanf("%d%d%d",&n,&m,&k)!=EOF)
     {
         dp[][]=;
         ; i<=n; ++i)
         {
             dp[i][]=dp[i][]=dp[i][]=;
             ; j<; ++j)
             {
                 dp[i][]+=dp[i-][j];
                 dp[i][]%=MOD;
                 dp[i][]+=dp[i-][j];
                 dp[i][]%=MOD;
                 dp[i][]+=dp[i-][j];
                 dp[i][]%=MOD;
             }
             ) dp[i][]=(dp[i][]-)%MOD;
             ]=(dp[i][]-dp[i-k-][]-dp[i-k-][]+*MOD)%MOD;
         }
         ll sum=(dp[n][]+dp[n][]+dp[n][])%MOD;
         m--;
         ; i<=n; ++i)
         {
             dp[i][]=dp[i][]=dp[i][]=;
             ; j<; ++j)
             {
                 dp[i][]+=dp[i-][j];
                 dp[i][]%=MOD;
                 dp[i][]+=dp[i-][j];
                 dp[i][]%=MOD;
                 dp[i][]+=dp[i-][j];
                 dp[i][]%=MOD;
             }
             ) dp[i][]=(dp[i][]-)%MOD;
             ]=(dp[i][]-dp[i-k-][]-dp[i-k-][]+*MOD)%MOD;
             ) dp[i][]=(dp[i][]-)%MOD;
             ]=(dp[i][]-dp[i-m-][]-dp[i-m-][]+*MOD)%MOD;
         }
         ll res=(dp[n][]+dp[n][]+dp[n][])%MOD;
         printf("%lld\n",((sum-res)%MOD+MOD)%MOD);
     }
     ;
 }

考虑一下这个题与UVa 10328 - Coin Toss的异同。

在表示状态的时候,本题更加细致。在上个题中,减去非法状态时,需要得到某个以F为最后位置的状态,这个状态可以由上个阶段(不需考虑F或H)直接*2转移而来。

本题中,减去非法状态需要得到某个以非G为最后位置的状态,不同于上个题中除了H就是F,这个题有三种兵,虽然以C为尾容易转移得到,但以R为尾的却不能直接从上阶段转移过来。所以在状态中直接保存。

ZOJ 3747 - Attack on Titans (递推)的更多相关文章

  1. ZOJ 3747 Attack on Titans

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3747 题意: 现在有n个士兵进行排序,只有G.R.P三种士兵,要求至少有m ...

  2. LA 3516(ZOJ 2641) Exploring Pyramids(递推 DP)

    Exploring Pyramids Archaeologists have discovered a new set of hidden caves in one of the Egyptian p ...

  3. ACM学习历程—ZOJ 3777 Problem Arrangement(递推 && 状压)

    Description The 11th Zhejiang Provincial Collegiate Programming Contest is coming! As a problem sett ...

  4. 递推DP(至少和至多之间的转换

    UVa 10328 - Coin Toss 题意:给你一个硬币,抛掷n次,问出现连续至少k个正面向上的情况有多少种. 转换成抛N次至多连续有N个减去抛N次至多连续有K-1个1的情况 dp[i][k]表 ...

  5. zoj 3747 递推dp

    Attack on Titans Time Limit: 2 Seconds      Memory Limit: 65536 KB Over centuries ago, mankind faced ...

  6. attack on titans(动态规划递推,限制条件,至少转至多方法,进击的巨人)

    题目意思: 给n个士兵排队,每个士兵三种G.R.P可选,求至少有m个连续G士兵,最多有k个连续R士兵的排列的种数. 原题 Attack on Titans Time Limit: 2 Seconds ...

  7. ZOJ 3690 &amp; HDU 3658 (矩阵高速幂+公式递推)

    ZOJ 3690 题意: 有n个人和m个数和一个k,如今每一个人能够选择一个数.假设相邻的两个人选择同样的数.那么这个数要大于k 求选择方案数. 思路: 打表推了非常久的公式都没推出来什么可行解,好不 ...

  8. ZOJ 3182 HDU 2842递推

    ZOJ 3182 Nine Interlinks 题目大意:把一些带标号的环套到棍子上,标号为1的可以所以操作,标号i的根子在棍子上时,只有它标号比它小的换都不在棍子上,才能把标号为i+1的环,放在棍 ...

  9. ACM学习历程——ZOJ 3822 Domination (2014牡丹江区域赛 D题)(概率,数学递推)

    Description Edward is the headmaster of Marjar University. He is enthusiastic about chess and often ...

随机推荐

  1. c语言数据结构:01背包问题-------动态规划

    两天的时间都在学习动态规划:小作业(01背包问题:) 数据结构老师布置的这个小作业还真是让人伤头脑,自己实在想不出来了便去网上寻找讲解,看到一篇不错的文章: http://www.cnblogs.co ...

  2. Spring表达式语言 之 5.4在Bean定义中使用EL(拾伍)

    5.4.1  xml风格的配置 SpEL支持在Bean定义时注入,默认使用"#{SpEL表达式}"表示,其中"#root"根对象默认可以认为是Applicati ...

  3. 全面理解面向对象的 JavaScript

    前言 当今 JavaScript 大行其道,各种应用对其依赖日深.web 程序员已逐渐习惯使用各种优秀的 JavaScript 框架快速开发 Web 应用,从而忽略了对原生 JavaScript 的学 ...

  4. text-overflow:ellipsis实现超出隐藏时省略号显示

    text-overflow:ellipsis;要达到的效果是:文字超出容器宽度时,文字被隐藏的文字用省略号代替.所以该属性只能用于块状元素或行内块元素中,对行内元素是不起作用的. 一般和white-s ...

  5. hduoj-----(2896)病毒侵袭(ac自动机)

    病毒侵袭 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  6. hdu----(5056)Boring count(贪心)

    Boring count Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  7. javaWeb学习之运用myeclipse结合tomcat开发一些简单的jsp和service

    servlet是什么?     servlet是java服务器端编程.不同于我们之前写的一般的java应用程序,Servlet程序是运行在服务器上的,服务器有很多种.....现在只是用过 tomcat ...

  8. POJ1780-Code(欧拉路径求解)

    题目链接:poj1780-Code 题意:有个保险箱子是n位数字编码,当正确输入最后一位编码后就会打开(即输入任意多的数字只有最后n位数字有效)……要选择一个好的数字序列,最多只需按键10n+n-1次 ...

  9. 网页 console的使用

    通过按下回车键会触发执行命令,而有时候我们需要执行的逻辑比较复杂,需要多行才可以完成,可以通过点击“shift+回车键”来实现换行. 在console中,可以实现对按钮的监控.比如此时按钮的文本值为“ ...

  10. eval()函数使用

    条件:有数据集data[indx],数据集内含有对象data[index].obj1.pama1. 说明:传入参数为var str = 'obj1.pama1',要求取得data[index].obj ...