binary-tree-maximum-path-sum(mock)
注意:
// 注意,如果一个类放在另一个类里面,初始化时候会报错 Solution is not a enclosing class
// 这是因为如果TreeNode不是static,那么要求先有外部类的实例
// 要加上static
// 或者放到类的外面
https://leetcode.com/problems/binary-tree-maximum-path-sum/
https://leetcode.com/mockinterview/session/result/xslp8c2/
package com.company; import java.util.ArrayList;
import java.util.List; class Solution { // 注意,如果放在Solution里面,会报错 Solution is not a enclosing class
// 这是因为如果TreeNode不是static,那么要求先有外部类的实例
// 要加上static
static class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode(int x) { val = x; }
} public int maxPathSum(TreeNode root) {
// 要求至少有一个元素,全是负数情况下不能认为是0
if (root == null) {
return 0;
}
List<Integer> ret = impl(root);
return ret.get(1);
} // 多值返回一般放在容器里
// [0]包含root的单一路径最大值; [1] 最大值;
// 调用时保证root不会为null
private List<Integer> impl(TreeNode root) {
List<Integer> ret = new ArrayList();
int maxWithRoot = root.val;
int maxRet = root.val; if (root.left != null) {
List<Integer> left = impl(root.left);
System.out.printf("Here is left %d, ret: %d, %d\n", root.left.val, left.get(0), left.get(1));
if (left.get(0) > 0) {
maxWithRoot = root.val + left.get(0);
}
maxRet = maxWithRoot > left.get(1) ? maxWithRoot : left.get(1); }
if (root.right != null) {
List<Integer> right = impl(root.right);
int tmp = maxWithRoot;
if (root.val + right.get(0) > maxWithRoot) {
maxWithRoot = root.val + right.get(0);
}
// 下面这个地方因为考虑不周,导致了一个bug,只考虑了maxWithRoot,没有考虑之前的maxRet
maxRet = maxWithRoot > maxRet ? maxWithRoot : maxRet;
maxRet = maxRet > right.get(1) ? maxRet : right.get(1); // merge two branch
if (tmp + right.get(0) > maxRet) {
maxRet = tmp + right.get(0);
}
} ret.add(maxWithRoot);
ret.add(maxRet);
System.out.printf("Here is node %d, ret: %d, %d\n", root.val, maxWithRoot, maxRet);
return ret;
}
} public class Main { public static void main(String[] args) {
// write your code here
System.out.println("Hello"); Solution.TreeNode node1 = new Solution.TreeNode(1);
Solution.TreeNode node2 = new Solution.TreeNode(2);
Solution.TreeNode node3 = new Solution.TreeNode(3);
Solution.TreeNode node4 = new Solution.TreeNode(4);
Solution.TreeNode node5 = new Solution.TreeNode(5);
Solution.TreeNode node6 = new Solution.TreeNode(6);
Solution.TreeNode node7 = new Solution.TreeNode(7);
Solution.TreeNode node8 = new Solution.TreeNode(8);
Solution.TreeNode node9 = new Solution.TreeNode(9);
Solution.TreeNode node10 = new Solution.TreeNode(10);
node1.left = node2;
node1.right = node3;
node2.left = node4;
node2.right = node5;
node3.left = node6;
node3.right = node7;
node4.left = node8;
node4.right = node9;
node5.left = node10; Solution solution = new Solution();
int ret = solution.maxPathSum(node1);
System.out.printf("Get ret: %d\n", ret); }
}
binary-tree-maximum-path-sum(mock)的更多相关文章
- [leetcode]Binary Tree Maximum Path Sum
Binary Tree Maximum Path Sum Given a binary tree, find the maximum path sum. The path may start and ...
- 【leetcode】Binary Tree Maximum Path Sum
Binary Tree Maximum Path Sum Given a binary tree, find the maximum path sum. The path may start and ...
- 26. Binary Tree Maximum Path Sum
Binary Tree Maximum Path Sum Given a binary tree, find the maximum path sum. The path may start and ...
- leetcode 124. Binary Tree Maximum Path Sum 、543. Diameter of Binary Tree(直径)
124. Binary Tree Maximum Path Sum https://www.cnblogs.com/grandyang/p/4280120.html 如果你要计算加上当前节点的最大pa ...
- LeetCode: Binary Tree Maximum Path Sum 解题报告
Binary Tree Maximum Path SumGiven a binary tree, find the maximum path sum. The path may start and e ...
- 【LeetCode】124. Binary Tree Maximum Path Sum
Binary Tree Maximum Path Sum Given a binary tree, find the maximum path sum. The path may start and ...
- 二叉树系列 - 二叉树里的最长路径 例 [LeetCode] Binary Tree Maximum Path Sum
题目: Binary Tree Maximum Path Sum Given a binary tree, find the maximum path sum. The path may start ...
- 第四周 Leetcode 124. Binary Tree Maximum Path Sum (HARD)
124. Binary Tree Maximum Path Sum 题意:给定一个二叉树,每个节点有一个权值,寻找任意一个路径,使得权值和最大,只需返回权值和. 思路:对于每一个节点 首先考虑以这个节 ...
- [LeetCode] Binary Tree Maximum Path Sum 求二叉树的最大路径和
Given a binary tree, find the maximum path sum. The path may start and end at any node in the tree. ...
- LeetCode(124) Binary Tree Maximum Path Sum
题目 Given a binary tree, find the maximum path sum. For this problem, a path is defined as any sequen ...
随机推荐
- [HTML/CSS]display:none和visibility:hidden的区别
写在前面 在群里有朋友问这样一个问题,display:none的标签,影响了布局.这就引出了本篇这样的问题,印象中display:none的块元素是不占位置的. 一个例子 <!DOCTYPE h ...
- 函数式 CSS (FCSS)
在Wealthfront我们是一个函数式编程的超级粉丝.强调不变性和函数式风格意味着更少的“意外”(surprises),因为副作用是有限的或不存在的.我们能将独立的组件迅速构建出大型系统,通过组合的 ...
- linux下命令行查看Memcached运行状态(shell)
stats查看memcached状态的基本命令,通过这个命令可以看到如下信息:STAT pid 22459 进程IDSTAT uptime 10 ...
- 当你碰到一个网络中有多个PXE Server 肿么办?
今天在用PXE 安装Openstack Compute节点时,郁闷得发现同一网段中还有一个PXE Server,而我的Compute 启动起来总会先找到它,但那个设置不受我控制,子网也不归我管,那个s ...
- codeforces 463D Gargari and Permutations(dp)
题目 参考网上的代码的... //要找到所有序列中的最长的公共子序列, //定义状态dp[i]为在第一个序列中前i个数字中的最长公共子序列的长度, //状态转移方程为dp[i]=max(dp[i],d ...
- Javascript 正则表达式_3
<!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <m ...
- POJ 1947 Rebuilding Roads(树形DP)
题目链接 题意 : 给你一棵树,问你至少断掉几条边能够得到有p个点的子树. 思路 : dp[i][j]代表的是以i为根的子树有j个节点.dp[u][i] = dp[u][j]+dp[son][i-j] ...
- SVN与CVS的区别大全(转载)
本节讲解SVN与CVS的区别,主要包括是否更好的冲突标识与处理,是否有更多的本地/离线操作以及元数据管理问题. 更好的冲突标识与处理 通过是否进行更好的冲突标识与处理看SVN与CVS的区别:C ...
- Python概述_软件安装_常见问题
1. Python安装 目前python有2个大版本,2和3,由于2和3语法有差别,现有的许多库都是基于python2开发,本系列文章以python2为主. 1.1 重要概念 1. 动态语言 运行 ...
- Oracle创建用户并赋予权限
1 CREATE USER username IDENTIFIED BY password; --这个是创建用户(这是最简单的创建语句没有指定表空间) 1 GRANT CREATE SESSION T ...