昨天看了下差分约数系统的含义,其实就是如果有n个变量在m个形如aj-ai>=bk条件下,求解的此不等式的方法。

而这种不等式的解法其实就是转化为图论的最小路的算法求解的。我们将上面的不等式边形后得到aj>=ai+bk正好就可以看做是从ai到aj权值是bk的一条路径最短的边。这样一来,只要依照题目的条件写出一系列这样的不等式,也就是相当于按照题意增加了一些合法的边,也就完全转化为了最短路的算法。

再看这道题,题目说[ai, bi]区间内和点集Z至少有ci个共同元素,那也就是说如果我用Si表示区间[0,i]区间内至少有多少个元素的话,那么Sbi - Sai >= ci,这样我们就构造出来了一系列边,权值为ci,但是这远远不够,因为有很多点依然没有相连接起来(也就是从起点可能根本就还没有到终点的路线),此时,我们再看看Si的定义,也不难写出0<=Si - Si-1<=1的限制条件,虽然看上去是没有什么意义的条件,但是如果你也把它构造出一系列的边的话,这样从起点到终点的最短路也就顺理成章的出现了。

我们将上面的限制条件写为同意的形式:

Sbi - Sai >= ci

Si - Si-1 >= 0

Si-1 - Si >= -1

这样一来就构造出了三种权值的边,而最短路自然也就没问题了。

但要注意的是,由于查分约束系统里常常会有负权边,所以为了避免负权回路,往往用Bellman-Ford或是SPFA求解(存在负权回路则最短路不存在)。

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABTMAAABKCAIAAADouVc2AAAgAElEQVR4nO1dy3IcyXXtz4EwUvBXYAuS7AWX/ANDoQc2Dq3wAYKkkCXYEQqFVxNcCGZ4YUOSwzHh3TCCi0FXAySI7moAHJIgQc0ADXSlF/XKx82srOyqysquU3EWZD8Kt09l3ntPPm6OGC5cuHDhwoULFy5cuHDhwoXL3zV6svccaBuMMe82AM5Iu4p3M3oCUAEAfoE+6MwbqHOmzrsNgQLUgToAqAUo8y4A/xI0kM9JbHi3AQCGDPRBZ95AnTN13m0IFKAO1AFALUCZdwH4l6CBfE5iw7sNADBkoA868wbqnKnzbkOgAHWgDgBqAcq8C8C/BA3kcxIb3m0AgCEDfdCZN1DnTJ13GwIFqAN1AFALUOZdAP4laCCfk9jwbgMADBnog868gTpn6rzbECg6oO6X0UKoH3Xz4ZdN3nbx5edrSx0A9BBQ5l0A/iVoIJ+T2PBuAwAMGeiDzryBOmfqvNsQKFqm7vJMU9757ItVbw5lDgBeAGXeBeBfggbyOYkN7zYAwJCBPujMG6hzps67DYGiTeq0spwxxtg3z1a7P5Q5AHgBlHkXgH8JGsjnJDa82wAAQwb6oDNvoM6ZOu82BIr2qOMWsfMivJTr19FLzec1uv2Lbxj3XVKZCze5uAyUOgDoM6DMuwD8S9BAPiex4d0GABgy0AedeQN1ztR5tyFQtEbdyy9vNBr78w/X8mr24sPCJXyGk+XiVShz8iarzsz7oA4Aeg0o8y4A/xI0kM9JbHi3AQCGDPRBZ95AnTN13m0IFK1Rl8+NW0xcFxPd+Sy6quqLmfb8lVKoZ8pcmULPviLNzIdAHQD0GlDmXQD+JWggn5PY8G4DAAwZ6IPOvIE6Z+q82xAo2qLu8w/XtsI41+F8zXbp67kO52fRn13wyjy/CTcQkGn1hkrBd0cdAPQbUOZdAP4laCCfk9jwbgMADBnog868gTpn6rzbECj8K3P6k8KUu3FLefqiodpcWwva0eqAYQLKvAvAvwQN5HMSG95tAIAhA33QmTdQ50yddxsCRdvKvHo1O63MhYn01ZR5W8Xb0eqAYQLKvAvAvwQN5HMSG95tAIAhA33QmTdQ50yddxsCRWvU6SvA7V2e8Tq82Tnzluuxd0IdAPQaUOZdAP4laCCfk9jwbgMADBnog868gTpn6rzbECjao67y1LRcRTe6z7y1XeVdUgcAfQaUeReAfwkayOckNrzbAABDBvqgM2+gzpk67zYEijapM6wwFybAG63NXtwk/woqwAFAo2hNmRd7YIirxfMPC8iLc7T2tLVDhkcI/kU7IEoucxoUtPmcvpGLR4m6ghrGltD90wmhMa8PuFkR5epwVaFojNTYLs86t2TgqN8HhQxe8if5zJifRtUxb626L1NvTTvOF/b1tPsFA29Z++lwKjUstBwxteK8q/PMW8w9WqbOKyS2HbpPjeL8Ddz22YVeuJnkXnqry+4XXAQNL8q83c6cwlqZM8ZaT0dC8C9Q5lqkbYR4y9ioGnCXUOaDR0Wu322cIxpb2kTXWs71EPX7oJC+09tNOwmF3nlr1X1BmXu3s4foIGLKDU/3LAQ1SAkt7gPX0UsyuxAG8lqeZuuAOh+gR0lqZ3HdKfM0RkCZdwdfyrz1DKCeMm9qklODEPwLlLkWaQsh3qpoVCsHLSjzwaMq12/XcWmMKRqbh5pAwJOVlbng5KWpm7V+lFpP3hCqlXmwMdTAG5S5M3XAEKnTrk2o2YlaUuYK8rGYVZR5YAOR3tG6MlceiXY3C5diygkfnxFyI3amOKdT5soKDacuURMh+Jdaylwa8yMehJCjCNle+YeeFZ/pdzqY2ki8ZT6MJG/SJYFfFP6r9HFiMif6Pq5r6Jo9rcx51y8+UM7JKnViOPdq0HshNOb1gXbkpXjEZOeiH6Kx2xKNWfYJgjFqMO53L14n1O+DRWdfXN8Ijz59ptc3pCvm9bzO7XCNKmsn5beohExshGKboVwleSvHYlTprbp5RnTPlXoZ918uEGRfMSYn5p7eaZOzU+byPCG5jvrsCyEgmjzYzYdfyokiMVBIiQqjJcK30i+SjU3bNWpRB5ixltQVrYuQPFxbIpqupJVo70HW8KuT7wk+Sp3er5pwsjiiT/gvZ4ZUjLCmslgrdK/MlQZXQ5mrl7aVWCrzJ3L9yVbAAvAv9sqc3tfEPT5yrU7xpIh3u5z3c3t89BPUNSqxSROtV6qYqmNDP7ZafEbN/8TFZsziXcb41LzqodBUAO1AvyZCSUPJcesydFV1WyjzcFC/D5YD4l9GC+65p494cXahKHPK+RRtQxuRbxYmRU1PreiGKVN7PlSXla7DW33qHFFLmStXOoDCE0v8fJEobzvyLJQ57XzKx1e9w/m5fg1wLWVeZYk+RJY/0Ng1alEHmLGW1NFT0IoOslfmhtboku91qcyrDav0AF2ULese/ubMFTdnp8yzx0ANOwmwV+Y2a4ZXBAvAv9gqcyXhMKbv3NNUioIGs8QltZZ4q96cucxtdblUdeyw8MU6tuXGnN8z70qlp5ayGaaMpGpSvRAa8/qgcs5cbjyyX7XttrWV+d5zrGb3hfp9kFuqxpcGSB86sXxJF4Iz16T4NP3Meen0is8o3kwN9JyrVLuA8xae9N7dPKOaylwuf63MnOt7rtjTu29y1cpctlDxG9VlwA3hso4yt7dEjZhSw9Z0jVrUAWasJ3X8yI4+dNZS5nm+Jy9Jdsn3lEygejU7j5rKXB2jlGbOFQ+gUxZrBW/7zNXhUhtlbpzhEVBDmbe/W4MF4F/qKnMdXbIULL8i98lgNt2l5hJv2e0z1zBW44hR/ovmgRIiScpuInlqtdqqPvNT2PD+RIYD252rectRl66kjaeq20KZh4T6fZDL2LIH/c2zPa6AnyRICLGX3UEabVRmePRzPlSctQsucgbmvLE5vXk3z6ieMtcrQ106ruvp3Te5eo+D3GlFRDrJt5jCZc3V7CZLqM+LY0xVXaMWdYAZ60odOZWtOTLDQpnz8Vf8jEu+16ky1x/ap/MAWmWxVvCkzKkKNJb7zI2PvwSUeU1UKnN1Ipd6mqYDNtM7qH2y70jNJd4yNnJlwblhM4/CnpAfa7fkPZHbuX69nzwDU5KvvAJl3iOYlbnFclC5LZWX9HyhzMNB/T7I5z3ZCvaiaMt19FIShIZWJw70mOaxJcdiroihE/zCrcRJS4d4nd68m2dUd585/QGFouqe3nmTs1LmpNk1Fk6SrsZpn7nJEjL2CS9Wdo1a1AFmrDN1dEc2JGamfeblbcUXXfK9LpW5uqKqfEXTu42krQ06V+Zq8PCuzLGafe95DWWuC07V/UdUj+EMdKXWE29plbngKaxSNPIpNKnMpTFUxVObXKTMhvcnMhzoEkHZWVmUezV2WyjzkFC/Dwrzfrkgvywkur0yFz+gKnNtCmjjBqv2bvCmuiy5Sg3q5hmtqMzVaiPVytxTFVvr1exF+9EtyG9fmVdYspIyx/6vxjEM6uiimO0qc0O+51eZq5VxbJXFWqG7febaQqOqU9ZuP2tFmaMCnMiD3P203VLWpSmBlcn6Gipz8+xNHWXe0Jy5nlso87BgqL8otBz74UW62xpOMYUy7x3q90HhURLnQYgxt3Ijd2PK3OTNCPuvo5ernNGl9eQtoG1l3nHZVANvVU9EXSXXmTKX/nSlJfbKvEa62FmTWz+sI3XaoCn1IzVVk5cUDVOZDyPZ6LQCnFKN4PmTPc/KXFedq1kE4V/ooZNijNliRPzsi+cW4hDKXM+DZp85sbXGvM9c70OhzMMC1XhKcW5fd4NA9QA8lHlPUb8Pio+SH52RXjGMCXJwUOZ19pkTsid3U4tVtp5pPXkLaEuZd3WIsUqd7i1bZa6uU62hzKmoJMdHa2Wut4QIoFLV1fojI501ufXDOlKnKYGsFPe1V+aG3cFrpMzDEw6roOPa7HLZav6TxFFSLShz3dXqCHQY/sWwTI6pa2y0OwyVKj5S8Auvg6XmE2+tpMxr1WbX+mJdbXalN0kV4KDMw4A5v6cOI5Rbgjh2btgYrEtSDco8vL68HqjfB6WHq6y80BXTUspY6ia3q5V5jdrs1ISkEJ4cNxamX+7mGbWlzKt6evdNTnvMWNbeZIOJOYA6ZYDlvIJpg51ypk8NS4h0VO47dNeoRR1gxlpSV1HVVVf3Wq3ErtYz19ZmX0mZ11sn0pYyr1QWa4XOT00z5ZSVbbQ1Ze7vLNBeQR9iqVKlWg7JBxpwNp/+AOKt1ZT5CueZ2xReou8JZR4WKod1Ks4zV2eHpIvYk6m9SUVjw8x5V6jfBzXzD4Yyv6Tz0UdkC2Vuf545mQKqSsyFt/rUOaI1ZV7Z07tuclXKXB/I6ihzIlzmCyio43WlS1+/VmFP+Tn52fKqeucvfZtkKze5yoPZOsazC8s+22KrCxpWmbZes1SeZ75SvqcvQmnVCFtT5lXKYq3Q/Xnm5AJyPmv85lmbFeC8PFcWkH9Row4RcuQeoo4Wi66H78xQ5gbCRa/H5Sscn8J9yJuLCYrwFpR5WLAZ1iHWn9M9t7Lb8h9YfPl5ZQU48S+G06NDR/0+WBlSqY0JYtA0rEJ/YqnMhdeJJmp2lerBbA68dea+WlTm/POie3rzMPBWrczFkHT2hVLGz0qZP1cWVBpKvmV3MywJpi2RbsLP+ZMHtkmPryZ1NdtSH5R5yjmU+cpQMm1Ddeqskes3tsitOr9DM8p8T5t/EmhRmUuW9KRHtILWlDnAYZ39ywCQ+gDvZvQEoAIA/GKYfbDedkcNb8OkbnX0kjf38/PqgDhIuWPq+qPM9SMdUOYA0BigzLsA/EvQQD4nseHdBgAYMobYB9X19k68DZG6JuCdt2KuTNn+2mSRIGKX0Mrb+LtT5sJMvnb9nW5+9cnec2VfPT9vqa4l/uaZqMy5+cxmBhG8tzoA8AIo8y4A/xI0kM9JbHi3AQCGjGH1QWHZ50pTc/Dkq1Dn2QaLLeINQLvtcaWVGitaZaPMyT32tWrWVJV8MivzJhlrkDoACBFQ5l0A/iVopHHGuxk9AagAAL8YVh9UixKvwNuwqGsOveBNlc2tbLBXimWuJv5Xp65ametOuiKq1unO0DEcFqMezUPu27ctVt8ldQAQIqDMuwD8S9BAPiex4d0GABgy0AedeQN1ztR5tyFQdKDMiQ9kWt1wtJ7FedHKFpLqQ7b3bCvjdkMdAIQIKPMuAP8SNJDPSWx4twEAhgz0QWfeQJ0zdd5tCBQdKHNDefxMMFdXvydLYcsvWlWAgzIHgNUAZd4F4F+CBvI5iQ3vNgDAkIE+6MwbqHOmzrsNgcKvMs/kMZQ5AIQDKPMuAP8SNJDPSWx4twEAhgz0QWfeQJ0zdd5tCBQdKnP9RnQocwAIB1DmXQD+JWggn5PY8G4DAAwZ6IPOvIE6Z+q82xAoOlDm1YeKVytzap95UTcOyhwAOgSUeReAfwkayOckNrzbAABDBvqgM2+gzpk67zYEiuaUOXl982yPK9WW6+pcQssV4PTKXK3NztWolz9T6nAocwBoHFDmXQD+JWggn5PY8G4DAAwZ6IPOvIE6Z+q82xAoulDmms+U2thCmRMnlt8spNrs4rno/HnmUOYA0BigzLsA/EvQQD4nseHdBgAYMtAHnXkDdc7UebchUHSjzJ/sSbJZPE7cSpk/V84wJz7DVZtbfPk5lDkANA8o8y4A/xI0kM9JbHi3AQCGDPRBZ95AnTN13m0IFCFTlynz1TX28KgDAHdAmXcB+JeggXxOYsO7DQAwZKAPOvMG6pyp825DoAiFumIyvNDhxVy9MP0O6gCgZUCZdwH4l6CBfE5iw7sNADBkoA868wbqnKnzbkOgCIY6cTF8efHV2kEdALQPKPMuAP8SNJDPSWx4twEAhgz0QWfeQJ0zdd5tCBQhUVfUeC8uYRc6qAOALgBl3gXgX4IG8jmJDe82AMCQgT7ozBuoc6bOuw2BAtSBOgCoBSjzLgD/EjSQz0lseLcBAIYM9EFn3kCdM3XebQgUoA7UAUAtjOiNJbhw4cKFCxcuXLhw4cKFCxeuTq7ROGZA22DMvw2AM9LLuxk9AagAAL9AH3TmDdQ5U+fdhkAB6kAdANQClHkXgH8JGsjnJDa82wAAQwb6oDNvoM6ZOu82BApQB+oAoBagzLsA/EvQQD4nseHdBgAYMtAHnXkDdc7UebchUIA6UAcAtQBl3gXgX4IG8jmJDe82AMCQgT7ozBuoc6bOuw2BAtSBOgCoBSjzLgD/EjSQz0lseLcBAIYM9EFn3kCdM3XebQgUoA7UAUAtQJl3AfiXoIF8TmLDuw0AMGSgDzrzBuqcqfNuQ6AAdaAOAGoByrwLwL8EDeRzEhvebQD6jgM2GrGdI99mrCnQB515A3XO1Hm3IVCAOlAHALXQpDLf3x6NRo+obOzFzuZoNHq8r37r4PEov7YOyG9l18buC+6tp1sj9Srvf7j7KH+RtIeNYzY+2tsg/mhxZ/0X66Pn/mVrxEYKODK51zfZofD49G/FbByznc3sXYVn7rvqF4/YBmeJ9CB4e/Y1f26k+3p65+3aj6+lJ5j+FhM5DsTGbH+7RV3U88a8NkgfIuEzO8YB3cYqLYcybw+t9MGjvQ0qmEooYqsQkcvvar8oBlw5gqev72/TAb1B3hqmjiON7CYpXdRbJQMck3zOY/j5HHvbT1VLNnZfjOOnW8VbDVHX7LOwROFMyohPeqQjtrVrus/hrjd31CZ1mtRa6Mv5tbmnJFr5x/i3yCZN3lBqgYFR5wJOWZA/vEI+aCVSqYMsdUfpKNS+IHhRu6ejd1OCRqs0T3OfCr1G4ekW2WIFYyx+Y+3A1Bc0pMzL3688uZJKmZrD3UfliwePR2qIEqNO+S71eIp397fLJ6pvcFnLFt7in9DR3kZz4rxv/kV8QISa3ciDXCodiwe3s8kJxQNO4h4QUnmLu8+WqCH52x7uiuLziG1wH04/WTyIw93ynqk63Re/KP8WToSXMb4fyrwYEJHb5wrE8iRAmYeJZBwn47x5bB0k+Ss6tGvP/nZtZT5Wui3QLJrvg0d7G0UalEVzJfzpXj94XL548FiTA2kDrjjmnobsJofFJd6apI4jjco0ynyUSlV1mU+ZTUnMiBSJCdXBY/6vZB8IXZlrYh+fn3CkDU+ZV6TW8iU2wqw/ym3M3KTFZjYmm6Jn6irDpXv0PNx9VNCV/XBlREMrH8wSKe+q+tlNHk+3ygf3dEt8Irz8yVxQhR8wuCkmzY8SUtnmPka9RvKs+3Pi0K2GT+HvOgWmHqDJOXNDTN3fVnuv3KQEoa4MY+xvFy3sxc6mdKsXO5v531W6hNhSy7+1sSn7He5PaL/ohj6LmZ1NYua5IHBnU9SxB2Wk3BEDoTT9K+ltSeFLenJLPxYgfVj4o+KK2f1tOfSSomKrN8q8+AmSkasQy78IZd4vzHIQbyXj2XI8W47jJIqTaJ4822Ub22xjxEabyX/ED1H8EMUP4/h+HD+M44coXkbxMpon0TyJ4iSKWYrxjB3PkuNZEsVsMmfR6jZT7dP+i1DmLaHxPri/K0Y6nVwkkrwXO5v6IfUcZMAllPnB46Ziro63BqkTSePTZZlJqQcd7u5xHltl7OnW5uMt3TLD+OnW6NHGppCcELkKl+43RV1LD4VGOsRMrRfb34Yy59mgUmu5E3EjQTEzLGKtaNJ0Y35kFlrNUFcnek6yyLgc56Gziej5dEf8jZKKtpEPlER6sbPL9VOL+dvD3Uf8nQXdpDwy6cNaUE82e72WGyHuY9RrWrzY2VQIPNrbkIzhB5SpOzgGph7AnzLnxzMKlkuCJN/xdKv88ItDdSxfGOez+EObe4dyGyLdUDOD97VcM798S3Wd/IJt/t1CoRVfl5raFjWNPI6ZQibbUIRfcSs6KGZ0Cbm4LOn5mXAla9/f5mKwtOD8gA7PY1WjKk9qiyKw/8rcnVjxqUGZ9wgzFk1ZNGXRTEISzZLxdHk8vR/P7qPZMoqXk3nydyP26/nyV9tsNGI//vPdZH43md9O5reT+d1kvpjMF1Gc8D36ZM4mcTKeJsfnyZ9+ZtzKoUw6ZS2KezftNdI6Ut4J6BzUVrH/Asq8TbTeB+UEUT/3oqSSRAimA66szA93H7W6MnbcqifXLbLTpbwl5CmKTFmpgyM5Sxu7T8W0NU2WpL8e9mr21MnoeNtSIziUeUnFC2INsCQabWa51SbtS5nXi57Lk4vlZL6M4vvxLA2davS8T+X6JF6ezBM+eh6fJ9GMnV6waF5hm1kSk/KhekGQdmq3gKIwRQ8sjhe82Nm005y0myomzK11EKXMDXqt+IrSfkhlLjdsfhWDrBlXCUw9gF9lbhxBt9v2Jj0ewgb5D+UDNtLrlfasAHvXzG8uLTdU5/qTn1tOJXr6Swu5vrGZBTNppTcvR8sPU5GMXy4ufd6sIQWdfMQ2lPsXNqgbaNUl6+RydO2fI3FAfzc4ZW5PrI7PZgFl7gJjbhHFy3Jof3b/p5+zjZ/dH09vo4NkNGKjHyxPLm9Pr+5OrxanV4uTi0V0lGyM2D/917dfnd8e/y4Zjdh3dtkkZpOY/WqbjbbZJGYnc/Zj3glwI1xp89jY5dT4Zj4eJ01VKeM+O5vlf7dGspPJWuYR29qEMm8RrfdBMUHMouoBsQHVPeDGfISV5jda5K21Lfqa5LUi7VNlOcvnPMmJzXTyU05by/WfrQ1tdOr2c79UY400lLnxM9KO8Wxwx9BmyCatNuZsoXLLq9nrRM/j6d1X598eT2+j+G4yvzu5vJOjZ3w7nt1+df7tV+e3x9NFFD+koXMSZ7dNo2flijNhktxOPlQo82pZTt5WGjblN3WvoqiVVeg2vsVC5Ypyuo4ylyHNvQsOc6XA1AN4VubqejnxCeVjNhXbG+Tab4a9MYe7j/KZW1WZE3P4HStzSWXJy7yV/djFK1LRL0GbSfLPOJ1FzjMXUtnQz7f4d6mJXEGZi6KaUJJ5bCaGDw6sRgr4NfkGhi0fn0dlbk+sic/mAGXuAovcYjJfTubL8Wy5s8l2/vs2ihcvr5KffpeNRuxf3iXn79n0mp2/Z2dfJz/5jH1n92E8uzue3h1PH3Y22ej7ySRmJwdsNGK/uWAncxbNhJ7OK+px2ma48T51f0S+X05sbwfaT+5vC40Q+8xbRct9UJppkaKwsDFPs0jNIuDGeYTdfqxZJ98Kb01TRxVj07MhkZxd6trj9BUlR8qTWiJt5bcWtzHG0anbPxAmJHQgC76Wy4UOqLozxrqqLcGzMhenKPN2kuW6VEkCfZOuuWG4MepqRM/74+nt8TSNnsuzt8nrd8lrMXq+vHqYzBd59FwcTxfj6TJV46cX7LSInmbbjvY25EIP1fJBK5Hk8o3mv0vVsxCfVL4f23rExKhO6aqf9e+TW2tjlYUyN660Xykw9QAe95nLO+/TxiSuoHu0c1RVZEJ+PKlbEZZzlP/lNyr0UplLa5V50aUKMH5iXNpvLGTGanqtU4PUPHO2gj2XypoKtKKEXlGZ5wIgC72kkDbaI63JJ82o9fh8KfNaxGr5bBRQ5i4w5xazh/EsX193wEY/SF69WZ6/S+IP7K+/YKMR2/53dvGJXXxi8xsWf2DbI/b9PySv3y5fXqXpyMPx+UM0S57tstFn7D8v2CRm46lggOH8BXJ/RDH7rZZjlJB+cksaRMNq9jbRbh8kQ6qyfjJ9pSIBMgTc4j6bj4gC0a3x1g51ucxWM8WqtC/LoTfF/b3CIAi/Yjb9ty5tFWogN5tr9lCZC8CcufaHC1OUyud1e86pJq2dM29L2Fgpcz56zpenl8siel5+YvOPbH4jRM/ZdXL+joiekzhT5mr0JGlXeFhBmWfI+q9Qzbq8Hu0c2SjzfFw1ezR8BS7uosZcKjfdVEv9yvvYblyvVubyIxCxUmDqATwqcyYMG4+kMR5xeVvayKgnSj0epUZ/Gee05Ux1eUMjD6yGa+al2oEwaawKMH6e3KTMxQXkhiO11JJp0kS9tH61tFnSuppF1+krutXs+9x3Jcu18lsjs9U1+bwZwSjzmsRKfEKZ9wjmnXKzh/Hsfjy7n8yTn3xGzfB8j/35hs1T/B/7bMQ++wW7uGGza3b2dXJ6mYxnD+PpQ7ov/dcxi2bJeJqU9XLEPiXBXplLE+P0V1JAmbeJFvsgUVNHrW1Wpk2aRYPpK8aAGwvJa+1JHlfeWqNOo3As0j6lIDNXwYubNuckljltDf/kV6xmt0aVMperbamVyfR5u9KkycacSb5Weq7VPvMyei5fvUnO37H5R3b5iV39jV39jV0UcTPFR3Zxk0GKntFsma9pF6Mn0ZYeyTN2dvLB4uAJ4bQwnTJXV7MLYl46STG926rK3K7wlsVApJ2kqlTmFXPvKwWmHsCvMpeINulkYgjE4vEIu2W0RzI+3o+pFt+DCnB8sruljCKrm9J1ynwsTprZL2WXdaw6Z3vENmy2c3NfVG3jZ9FV3S4rB4u3dEvZCcPsHp8HZV6f2AJQ5r1Dxah/th7v5f+wze+yP39kl5+y8f7ZNfvdj9hoxH76v8vXb5fn75bT92x7xEbfY3/9xC4/sfgDe/2WnVwso/j+8OdsNGJbv8/q4pR/nRrQKVBPmZPpMpR5t2itD6pVnRm1WpJLmwyR2hxwYznmFmsm20uS2lTmmhTFJeXln0KhjvhUR05b97fpc7MaXGncsdvfqVuoAsqcpkUeaFM/b8jb5SZtqhPWykmHdnPmefS8KmV5ET2n75Pzd8vXb4vomcyu2cVN9hk+eo6nD/kNxegp4eAx0a3s5IPNkZBVZ0LRK5jKqWA3FWOlTi0WoleX1bAcwalS5pVz76sEph6gJ8pcqTeo7kInz1OpeDyag0w0T64Pp6Yd7mpnUNXZYz6lNitz9Wg0ihBCsqrDAfK2Z/HdnW2uypTTqWnqlL6hILy0e1ZnlfyL+q/MXYkln36zgD1XvcwAAAX9SURBVDJ3gTG3mMTJ6WXy6g373Y/Y9h/TFXfs/F3y6s3y9HJ5+m8srQM3mS9OLhanl8t08/nmP2cZRvyB/faH7DcXy+j32dDbr2bLaJaM4zJhTTNdvh/tb3Or2fnGxotqaiOM0N7y+8uOwvm4NcAC7fRBOW0q9J4SvvnAanU4zTi2K5JUdZT36ry1q8zrr2bPPkOvZi/vsLGpVCEWT00jZzIb7IBdu33jgvYt9XUoc/pXV8/uGhJduUnTjdlunfMq1NlFz/N3LP6gRM/Lh5OL+5OLRR49H86+Ts7fsUKfxx/Y2dfs5GIZzR7G02zyPIueKtSdPvxR5C6nphEP1Oz9TKemqWdbSvvhdbB0U5UL0c33qXEGW4Uyt5h7XyEw9QD+lblmcFcahyM1tulYPGXXusXz4INZcxPm47r7zNVaJrkZwmJy5TRv9b98GafKCijkPHNZxrm4rXS8GbXptLCWnHkbi3pS3nYuVYfmf+aBYgylscljzHmr+q7MVyCWpxfKvEcw5xbz5NWbZPZHNvoe+8sNO3/HXl4to3gxnt2NZ3dR/JC6ha3fp/9dnPyr0p3/IU0vEtWB8H1HgHhYA19xvWxs3GT4Dqfw1ftnW9D5ohi6Co7AymihDypbwEZKvV9+jaUsHfmCUvqKMDannxRVplqoCdeoJxc40dZVpg/4lRYOKAeeCSmpOicpLzNWsh2bysa1qWv8cZhB15090C7bgTJXQE9RCrsnhES3qkkTjVneGt0KdTbR8zpbo65Ez+wfxX9PLh5OL5cvr5Lpe3b5qVjWzk4u0gJyi/HsfkLaQxXAk4rem+UDIZFELW13/DinhpQBONEV6OUo9dOkTFIYIzCdHF5xnxwaveZQm502htx84RSYeoCmlLkY13nWdNsbiteNJ8UTHcD8eOzjumnPzMjXHi2yxpK601uauZIONlPPOSMFv1xazHBsuJLN02pff4i6Tj3S4+Lizfc1r+v6ElleXuXWviu2pMylh8Jvs1+FWKHWVwsVaKHMXVCVW/z2h+VT+/s/JFG8SI9+OflL8h3+gX6WPJvfT+b30Z+Tsp38I5t/ZNP37OVVMpkv+e0wuvPM+cGpdOlN8S1JSxev7yuvSPfn+9c+5szbRIsFxrmLOJtHF7LLnFU/PyMEXPkvcpXeNYlvQ7w1R51YJYfIN6QyOrKQpsjU3JOba5Ip2n46jtn+7t6hdNumxzV8uX05dak5qt4HtEWdeedwbJqi5JqKOuJD3VC7AHjU0jp2gbqq6Hn2dXJxw97esqu/sddvueh58TCZ36uI5vdRvHj15iHdds5Hz7SY3GS+HMfitDkly2mZTXOik0jC69YDHOW3VA/J+wGLG2rdlOBqqmW59j4lOeRNyPXRRk6IlSClAcRYEm2P+Jm+5SpNzpkDOtRS5qqbK1YyO4O4Q9UYM1Cg1TWQwQFUuMCYW7x6k8Qf2Pwjm39MB+/v05H+KF5E8X1xWKuIRRQvJvP7l1cP0/ds/jFdlZdM5vfH09vx7G4yX0axZkmeCEMdB6CfQB905g3UOVPn3YZAAepWpa7H0RMA2gCUeRewdc3UTu9xzPZXG86hV3cfsX1Pi7uCA/I5iQ3vNoQHY27x+m2WWEzfs5dXLM0b0tQhiheG3CL9TPr1vJjNA5T52gN90Jk3UOdMnXcbAgWoW5W6HkdPAGgDUOZdwNI1kyeEGcqMW4I46sxYIw2QgHxOYsO7DeFh1dxiySHNLe6j+D6KF5P54uzrrPLN+Tt2ermM4rvx7DaK78exvsAsB7XKI9BzoA868wbqnKnzbkOgAHWrUtfj6AkAbQDKvAusss+8kT088mYtJOJ1gHxOYsO7DeHBPbe4j+LyNJdolvBj/+PZfRQv0mI28Qc2fc9evVmeXCzGs2/Hs9vq3EJX0AHoN9AHnXkDdc7UebchUIC6VanrZ/QEgNYAZd4F4JqDBvI5iQ3vNoQH99xCTCzE9GI8W4xnd6eXy+l7Nrtms2v2+m1yenkfxbdfnX97PHvw/8OBFoA+6MwbqHOmzrsNgQLUrUodoicwMPw/I2CBdQFiW9IAAAAASUVORK5CYII=" alt="" width="697" height="38" />

 #include <map>
#include <set>
#include <stack>
#include <queue>
#include <cmath>
#include <ctime>
#include <vector>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;
#define eps 1e-15
#define MAXN 50005
#define INF 1000000007
#define MAX(a,b) (a > b ? a : b)
#define MIN(a,b) (a < b ? a : b)
#define mem(a) memset(a,0,sizeof(a)) struct EDGE//使用邻接表存边
{
int v;
int w;
int next;
}edge[*MAXN];
int head[MAXN], d[MAXN], vis[MAXN],N, n, Max,Min; void AddEdge(int u,int v,int w)//添加新边
{
edge[N].v = v;
edge[N].w = w;
edge[N].next = head[u];
head[u] = N++;
} void SPFA()//此题数据较大,用Bellman-ford恐怕过不了
{
for(int i=Min;i<=Max;i++) d[i] = -INF;
d[Min] = ;
queue<int>q;
q.push(Min);
while(!q.empty())
{
int x = q.front(); q.pop();
vis[x] = ;
for(int e=head[x];e != -;e=edge[e].next)if(d[edge[e].v] < d[x] + edge[e].w)
{
d[edge[e].v] = d[x] +edge[e].w;
if(!vis[edge[e].v])
{
q.push(edge[e].v);
vis[edge[e].v] = ;
}
}
}//由于题目说一定有解,我就略去了判断是否存在负权回路
} int main()
{
while(~scanf("%d", &n))
{
int u,v,w; N = ;
memset(head,-,sizeof(head));
mem(vis); mem(edge);
Min = INF; Max = -INF;
for(int i=;i<n;i++)
{
scanf("%d%d%d", &u,&v,&w);//题目条件的边
AddEdge(u,v+,w);
Min = MIN(Min, u);//在这里记录最小值和最大值,所求的就是以Min为源点
Max = MAX(Max, v+);//以Max为终点的最短路
}
for(int i = Min;i < Max; i++)//添加新边
{
AddEdge(i,i+,);
AddEdge(i+,i,-);
}
SPFA();
printf("%d\n", d[Max]);
}
return ;
}

POJ1201Intervals(差分约束系统)的更多相关文章

  1. UVA11478 Halum [差分约束系统]

    https://vjudge.net/problem/UVA-11478 给定一个有向图,每条边都有一个权值.每次你可以选择一个结点v和一个整数d,把所有以v为终点的边的权值减小d,把所有以v为起点的 ...

  2. BZOJ 2330: [SCOI2011]糖果 [差分约束系统] 【学习笔记】

    2330: [SCOI2011]糖果 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 5395  Solved: 1750[Submit][Status ...

  3. ACM/ICPC 之 差分约束系统两道(ZOJ2770-POJ1201)

    当对问题建立数学模型后,发现其是一个差分方程组,那么问题可以转换为最短路问题,一下分别选用Bellmanford-SPFA解题 ZOJ2770-Burn the Linked Camp //差分约束方 ...

  4. POJ1201 Intervals(差分约束系统)

    与ZOJ2770一个建模方式,前缀和当作点. 对于每个区间[a,b]有这么个条件,Sa-Sb-1>=c,然后我就那样连边WA了好几次. 后来偷看数据才想到这题还有两个隐藏的约束条件. 这题前缀和 ...

  5. UVA 11374 Halum (差分约束系统,最短路)

    题意:给定一个带权有向图,每次你可以选择一个结点v 和整数d ,把所有以v为终点的边权值减少d,把所有以v为起点的边权值增加d,最后要让所有的边权值为正,且尽量大.若无解,输出结果.若可无限大,输出结 ...

  6. Burn the Linked Camp(bellman 差分约束系统)

    Burn the Linked Camp Time Limit: 2 Seconds      Memory Limit: 65536 KB It is well known that, in the ...

  7. zoj 2770 Burn the Linked Camp (差分约束系统)

    // 差分约束系统// 火烧连营 // n个点 m条边 每天边约束i到j这些军营的人数 n个兵营都有容量// Si表示前i个军营的总数 那么 1.Si-S(i-1)<=C[i] 这里 建边(i- ...

  8. POJ 3169 Layout (差分约束系统)

    Layout 题目链接: Rhttp://acm.hust.edu.cn/vjudge/contest/122685#problem/S Description Like everyone else, ...

  9. POJ 3169 Layout 差分约束系统

    介绍下差分约束系统:就是多个2未知数不等式形如(a-b<=k)的形式 问你有没有解,或者求两个未知数的最大差或者最小差 转化为最短路(或最长路) 1:求最小差的时候,不等式转化为b-a>= ...

随机推荐

  1. yii2 html下拉框

    下拉框 带默认值 <?php $form=ActiveForm::begin(); echo $form->field($model,'uname', ['inputOptions'=&g ...

  2. 【转】Mac 10.10 yosemite 安装samba替代系统samba组件 -- samba不错不错

    原文网址:http://gcell.blog.163.com/blog/static/52666594201501084530277/ 1.首先,在系统偏好设置的共享设置中,关掉局域网文件共享(去掉打 ...

  3. Android 图文教学让你彻底理解activity启动模式

    我们首先从最简单的开始, standard 这个模式就是默认的模式,我们都知道 当你用这个模式时,每次发送一个intent,都会生成一个新的实例! 我写一个简单的例子: <?xml versio ...

  4. Oracle数据库备份手册

    1         故障类型 l  实例故障 由ORACLE内部异常.操作系统故障或其它相关软件引起,导致ORACLE实例中的进程或内存区出现故障或数据库无法正常关闭,这种故障称为实例故障.实例故障没 ...

  5. DevExpress控件GridView挂下拉控件无法对上值

    下拉控件使用RepositoryItemLookUpEdit,加入如下事件进行处理. repositoryItemLookUpEdit1.CustomDisplayText += new DevExp ...

  6. beginUpdates和endUpdates

    我们在做UITableView的修改,删除,选择时,需要对UITableView进行一系列的动作操作. 这样,我们就会用到 [tableView beginUpdates]; if (newCount ...

  7. linux下动态库编译的依赖问题

    这里主要是想试验一下,对一个具有多层嵌套的动态库进行编译时,是否要把最底层的库也包含进来的问题,结论是:只要直接依赖的库名称,不需要最底层库名称. 一,目录结构ZZZ├── add│   ├── ad ...

  8. Asp.net 身份验证方式?

    [Forms 身份验证] 通过其可将没有通过身份验证的请求重定向到使用 HTTP 客户端重定向的 HTML 窗体的系统.用户提供凭据并提交该窗体.如果应用程序验证该请求,系统就会发出包含凭据或密钥的 ...

  9. Cent OS5.2安装Hyper-V集成光盘

    一.Hyper-V安装windows系统没有问题,windows2000以后系统都可以,一切顺利. 驱动程序:IDE.SCSI.网络.视频和鼠标 要想实现更强的功能,宿主机需要安装Hyper-V集成光 ...

  10. static_cast .xml

    pre{ line-height:1; color:#1e1e1e; background-color:#d2d2d2; font-size:16px;}.sysFunc{color:#627cf6; ...