My birthday is coming up and traditionally I’m serving pie. Not just one pie, no, I have a number N of them, of various tastes and of various sizes. F of my

friends are coming to my party and each of them gets a piece of pie. This should be one piece of one pie, not several small pieces since that looks messy. This

piece can be one whole pie though. My friends are very annoying and if one of them gets a bigger piece than the others, they start complaining. Therefore all of

them should get equally sized (but not necessarily equally shaped) pieces, even if this leads to some pie getting spoiled (which is better than spoiling the

party). Of course, I want a piece of pie for myself too, and that piece should also be of the same size. What is the largest possible piece size all of us can get?

All the pies are cylindrical in shape and they all have the same height 1, but the radii of the pies can be different.

Input

One line with a positive integer: the number of test cases. Then for each test case: • One line with two integers N and F with 1 ≤ N, F ≤ 10000: the number

of pies and the number of friends. • One line with N integers ri with 1 ≤ ri ≤ 10000: the radii of the pies.

Output

For each test case, output one line with the largest possible volume V such that me and my friends can all get a pie piece of size V . The answer should be

given as a oating point number with an absolute error of at most 10−3.

Sample Input

3 3 3 4 3 3 1 24 5 10 5 1 4 2 3 4 5 6 5 4 2

Sample Output

25.1327 3.1416 50.2655

题目大意:我有个生日宴会邀请了f个朋友,宴会有n块饼,饼的高度都为1,分别给出n块饼的面积,要使得我和f个朋友每个人所分得的饼的体积都一样,

求每人分得的最大体积。

注意:每个人只能得到一块饼且不能由两块或两块以上不同的饼组合而成。

分析:首先用求出各个饼的体积,再将他们相加求出总体积(V),用V除以总人数(f+1)每人就可以得到最大的饼,由于每人不能由两块及两块以上不同的饼组合而成,

所以需要将V/(f+1)二分,直到找到最大且最合适的值。

代码如下:

#include <iostream>
#include <cstdio>
#include <cmath>
double pi=acos(-1);
const int maxn=10005;
double a[maxn];
int n,f;
using namespace std;
bool test(double x)
{
int num=0;
for(int i=0;i<n;i++)
{
num+=int(a[i]/x);
}
if(num>=f)
return true;
else
return false;
}
int main()
{
int t,r;
double max,v,left,right,mid;
scanf("%d",&t);
while(t--)
{ scanf("%d%d",&n,&f);
f=f+1;
for(int i=0;i<n;i++)
{
scanf("%d",&r);
a[i]=pi*r*r;
v+=a[i];
}
max=v/f;
left=0.0;
right=max;
while((right-left)>1e-6)
{
mid=(right+left)/2;
if(test(mid))
left=mid;
else
right=mid;
}
printf("%.4f\n",mid); }
}

Program C--二分的更多相关文章

  1. [bzoj1901][zoj2112][Dynamic Rankings] (整体二分+树状数组 or 动态开点线段树 or 主席树)

    Dynamic Rankings Time Limit: 10 Seconds      Memory Limit: 32768 KB The Company Dynamic Rankings has ...

  2. Codeforces Round #379 (Div. 2) A B C D 水 二分 模拟

    A. Anton and Danik time limit per test 1 second memory limit per test 256 megabytes input standard i ...

  3. 【BZOJ-2527】Meteors 整体二分 + 树状数组

    2527: [Poi2011]Meteors Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 831  Solved: 306[Submit][Stat ...

  4. HDU 4768 Flyer(二分)

    题目链接: 传送门 Flyer Time Limit: 1000MS     Memory Limit: 32768 K Description The new semester begins! Di ...

  5. Flyer(二分 HDU4768)

    Flyer Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submiss ...

  6. [ACM] poj 1064 Cable master (二分查找)

    Cable master Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 21071   Accepted: 4542 Des ...

  7. [ACM_图论] Sorting Slides(挑选幻灯片,二分匹配,中等)

    Description Professor Clumsey is going to give an important talk this afternoon. Unfortunately, he i ...

  8. [ACM_图论] The Perfect Stall 完美的牛栏(匈牙利算法、最大二分匹配)

    描述 农夫约翰上个星期刚刚建好了他的新牛棚,他使用了最新的挤奶技术.不幸的是,由于工程问题,每个牛栏都不一样.第一个星期,农夫约翰随便地让奶牛们进入牛栏,但是问题很快地显露出来:每头奶牛都只愿意在她们 ...

  9. POj3104 Drying(二分)

    Drying Time Limit: 2000MS Memory Limit: 65536K Description It is very hard to wash and especially to ...

  10. POJ 3903:Stock Exchange(裸LIS + 二分优化)

    http://poj.org/problem?id=3903 Stock Exchange Time Limit: 1000MS   Memory Limit: 65536K Total Submis ...

随机推荐

  1. iOS开发之引用百度地图SDK(一)-----------SDK开发指南

    (void)viewWillAppear:(BOOL)animated { [_mapView viewWillAppear]; _mapView.delegate = self; // 此处记得不用 ...

  2. JVM系列三:JVM参数设置、分析

    不管是YGC还是Full GC,GC过程中都会对导致程序运行中中断,正确的选择不同的GC策略,调整JVM.GC的参数,可以极大的减少由于GC工作,而导致的程序运行中断方面的问题,进而适当的提高Java ...

  3. phalcon: acl权限控制

    目录控制: public/index.php: $di['aclResource']=function(){ return include_once '../app/config/frontbackA ...

  4. VB6.0调用DLL

    目录 第1章 VB6.0调用DLL    1 1 VC++编写DLL    1 1.1 使用__stdcall    1 1.2 使用 .DEF 文件    1 2 简单数据类型    2 2.1 传 ...

  5. ThreadLocal 那点事儿

    原文出处: 黄勇 ThreadLocal,直译为“线程本地”或“本地线程”,如果你真的这么认为,那就错了!其实,它就是一个容器,用于存放线程的局部变量,我认为应该叫做 ThreadLocalVaria ...

  6. poj1122 FDNY to the Rescue!(dij+反向建图+输出路径)

    题目链接:poj1122 FDNY to the Rescue! 题意:给出矩阵,矩阵中每个元素tij表示从第i个交叉路口到第j个交叉路口所需时间,若tij为-1则表示两交叉路口之间没有直接路径,再给 ...

  7. javascript中IE与ff的区别

    1.自定义属性问题:可以使用获取常规属性的方法来获取自定义属性,也可以使用getAtribute()获取自定义属性,ff下只能使用getAttribute()获取自定义属性. 2. 在IE中可以用ev ...

  8. struts过滤器和拦截器的区别

    拦截器的工作原理:当接收到一个httprequest ,a) 当外部的httpservletrequest到来时 b) 初始到了servlet容器 传递给一个标准的过滤器链 c) FilterDisp ...

  9. [工作技能]SVN

    有的时候SVN上传txt文本文件,会报是bin文件的错误,解决方式是在.subversion文件夹下的config文件中加这么一句 *.txt = svn:mime-type=text/plain;s ...

  10. EFCode First 导航属性

    首先谈谈自己对EF的接触的过程吧,最先接触EF只是因为EF支持从数据库把关系扒下来,可以省掉自己写Select.Update.Insert这些SQL语句,而且修改非常方便,后来在使用的过程中发现导航属 ...