My birthday is coming up and traditionally I’m serving pie. Not just one pie, no, I have a number N of them, of various tastes and of various sizes. F of my

friends are coming to my party and each of them gets a piece of pie. This should be one piece of one pie, not several small pieces since that looks messy. This

piece can be one whole pie though. My friends are very annoying and if one of them gets a bigger piece than the others, they start complaining. Therefore all of

them should get equally sized (but not necessarily equally shaped) pieces, even if this leads to some pie getting spoiled (which is better than spoiling the

party). Of course, I want a piece of pie for myself too, and that piece should also be of the same size. What is the largest possible piece size all of us can get?

All the pies are cylindrical in shape and they all have the same height 1, but the radii of the pies can be different.

Input

One line with a positive integer: the number of test cases. Then for each test case: • One line with two integers N and F with 1 ≤ N, F ≤ 10000: the number

of pies and the number of friends. • One line with N integers ri with 1 ≤ ri ≤ 10000: the radii of the pies.

Output

For each test case, output one line with the largest possible volume V such that me and my friends can all get a pie piece of size V . The answer should be

given as a oating point number with an absolute error of at most 10−3.

Sample Input

3 3 3 4 3 3 1 24 5 10 5 1 4 2 3 4 5 6 5 4 2

Sample Output

25.1327 3.1416 50.2655

题目大意:我有个生日宴会邀请了f个朋友,宴会有n块饼,饼的高度都为1,分别给出n块饼的面积,要使得我和f个朋友每个人所分得的饼的体积都一样,

求每人分得的最大体积。

注意:每个人只能得到一块饼且不能由两块或两块以上不同的饼组合而成。

分析:首先用求出各个饼的体积,再将他们相加求出总体积(V),用V除以总人数(f+1)每人就可以得到最大的饼,由于每人不能由两块及两块以上不同的饼组合而成,

所以需要将V/(f+1)二分,直到找到最大且最合适的值。

代码如下:

#include <iostream>
#include <cstdio>
#include <cmath>
double pi=acos(-1);
const int maxn=10005;
double a[maxn];
int n,f;
using namespace std;
bool test(double x)
{
int num=0;
for(int i=0;i<n;i++)
{
num+=int(a[i]/x);
}
if(num>=f)
return true;
else
return false;
}
int main()
{
int t,r;
double max,v,left,right,mid;
scanf("%d",&t);
while(t--)
{ scanf("%d%d",&n,&f);
f=f+1;
for(int i=0;i<n;i++)
{
scanf("%d",&r);
a[i]=pi*r*r;
v+=a[i];
}
max=v/f;
left=0.0;
right=max;
while((right-left)>1e-6)
{
mid=(right+left)/2;
if(test(mid))
left=mid;
else
right=mid;
}
printf("%.4f\n",mid); }
}

Program C--二分的更多相关文章

  1. [bzoj1901][zoj2112][Dynamic Rankings] (整体二分+树状数组 or 动态开点线段树 or 主席树)

    Dynamic Rankings Time Limit: 10 Seconds      Memory Limit: 32768 KB The Company Dynamic Rankings has ...

  2. Codeforces Round #379 (Div. 2) A B C D 水 二分 模拟

    A. Anton and Danik time limit per test 1 second memory limit per test 256 megabytes input standard i ...

  3. 【BZOJ-2527】Meteors 整体二分 + 树状数组

    2527: [Poi2011]Meteors Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 831  Solved: 306[Submit][Stat ...

  4. HDU 4768 Flyer(二分)

    题目链接: 传送门 Flyer Time Limit: 1000MS     Memory Limit: 32768 K Description The new semester begins! Di ...

  5. Flyer(二分 HDU4768)

    Flyer Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submiss ...

  6. [ACM] poj 1064 Cable master (二分查找)

    Cable master Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 21071   Accepted: 4542 Des ...

  7. [ACM_图论] Sorting Slides(挑选幻灯片,二分匹配,中等)

    Description Professor Clumsey is going to give an important talk this afternoon. Unfortunately, he i ...

  8. [ACM_图论] The Perfect Stall 完美的牛栏(匈牙利算法、最大二分匹配)

    描述 农夫约翰上个星期刚刚建好了他的新牛棚,他使用了最新的挤奶技术.不幸的是,由于工程问题,每个牛栏都不一样.第一个星期,农夫约翰随便地让奶牛们进入牛栏,但是问题很快地显露出来:每头奶牛都只愿意在她们 ...

  9. POj3104 Drying(二分)

    Drying Time Limit: 2000MS Memory Limit: 65536K Description It is very hard to wash and especially to ...

  10. POJ 3903:Stock Exchange(裸LIS + 二分优化)

    http://poj.org/problem?id=3903 Stock Exchange Time Limit: 1000MS   Memory Limit: 65536K Total Submis ...

随机推荐

  1. Maven——聚合与继承

    原文:http://www.cnblogs.com/xdp-gacl/p/4058008.html 一.聚合 如果我们想一次构建多个项目模块,那我们就需要对多个项目模块进行聚合 1.1.聚合配置代码 ...

  2. linux下在jar包中找类是否存在

    find /usr/lib -name "*.jar" -exec grep -Hsli 类名 {} \;

  3. Kafka消息保证不丢失和重复消费问题

    使用同步模式的时候,有3种状态保证消息被安全生产,在配置为1(只保证写入leader成功)的话,如果刚好leader partition挂了,数据就会丢失.还有一种情况可能会丢失消息,就是使用异步模式 ...

  4. 【转载】PHP运行模式的深入理解

    PHP运行模式的深入理解 作者: 字体:[增加 减小] 类型:转载 时间:2013-06-03我要评论 本篇文章是对PHP运行模式进行了详细的分析介绍,需要的朋友参考下   PHP运行模式有4钟:1) ...

  5. sql raiseerror

    raiserror 的作用: raiserror 是用于抛出一个错误.[ 以下资料来源于sql server 2005的帮助 ]   其语法如下: RAISERROR ( { msg_id | msg ...

  6. c语言数据结构:递归的替代-------回溯算法

    1.要理解回溯就必须清楚递归的定义和过程. 递归算法的非递归形式可采用回溯算法.主要考虑的问题在于: 怎样算完整的一轮操作. 执行的操作过程中怎样保存当前的状态以确保以后回溯访问. 怎样返回至上一次未 ...

  7. 《Java程序设计》学期总结

    <Java程序设计> 学期总结 课程设计小组 -迦瓦栈队 团队博客 读书笔记汇总 第一周 第二周 第三周 第四周 第五周 第六周 第七周 第八周 第九周 第十周 实验报告汇总 实验一 实验 ...

  8. 【转】HTML, CSS和Javascript调试入门

    转 http://www.cnblogs.com/PurpleTide/archive/2011/11/25/2262269.html HTML, CSS和Javascript调试入门 本文介绍一些入 ...

  9. WPF:linq

    /// <summary> /// 该药品是否存在发药信息 /// 存在返回true,否则返回false /// </summary> /// <param name=& ...

  10. Android 反编译工具简介

    Android 反编译工具: 所需工具:1 apktool : 用于获取资源文件 2 dex2Jar : 用于将classes.dex转化成jar文件 2 jd-gui: 将jar文件转化成java文 ...