试证: $$\bex \left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0. \eex$$

证明 (from Hansschwarzkopf): 对任何$x>0$, 有 \[x\ln\left(1+\frac{1}{x}\right)=x\ln\frac{1+\frac{1}{2x+1}}{1-\frac{1}{2x+1}} =2x\left(\frac{1}{2x+1}+\frac{1}{3(2x+1)^3}+\ldots\right)>\frac{2x}{2x+1} >\ln \frac{2ex}{2x+1},\] 故 \[\left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0.\]

[再寄小读者之数学篇](2014-12-04 $\left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0.$)的更多相关文章

  1. [再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)

    设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac ...

  2. [再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合)

    (2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合) 设 ${\bf A},{\bf B}$ 都是反对称矩阵, 且 ${\b ...

  3. [再寄小读者之数学篇](2014-06-22 求导数 [中国科学技术大学2014年高等数学B考研试题])

    设 $f(x)=x^2\ln(x+1)$, 求 $f^{(n)}(0)$. 解答: 利用 Leibniz 公式易知 $f'(0)=f''(0)=0$, $f^{(n)}(0)=(-1)^{n-3} n ...

  4. [再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)

    $$\bex q>3\ra \sen{\n f}_{L^\infty} \leq C(q)\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2}\sex{e+\sen{ ...

  5. [再寄小读者之数学篇](2014-06-26 Besov space estimates)

    (1) $$\bex \sen{D^k f}_{\dot B^s_{p,q}}\sim \sen{f}_{\dot B^{s+k}_{p,q}}. \eex$$ (2) $$\beex \bea &a ...

  6. [再寄小读者之数学篇](2014-06-23 Bernstein's inequality)

    $$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq ...

  7. [再寄小读者之数学篇](2014-06-21 Beal-Kaot-Majda type logarithmic Sobolev inequality)

    For $f\in H^s(\bbR^3)$ with $s>\cfrac{3}{2}$, we have $$\bex \sen{f}_{L^\infty}\leq C\sex{1+\sen{ ...

  8. [再寄小读者之数学篇](2014-04-08 from 1297503521@qq.com $\sin x-x\cos x=0$ 的根的估计)

    (2014-04-08 from 1297503521@qq.com) 设方程 $\sin x-x\cos x=0$ 在 $(0,+\infty)$ 中的第 $n$ 个解为 $x_n$. 证明: $$ ...

  9. [再寄小读者之数学篇](2014-11-26 广义 Schur 分解定理)

    设 $A,B\in \bbR^{n\times n}$ 的特征值都是实数, 则存在正交阵 $P,Q$ 使得 $PAQ$, $PBQ$ 为上三角阵.

随机推荐

  1. WordPress主题制作教程10:添加文章类型插件Custom Post Type UI

    下载 Custom Post Type UI>> 用Custom Post Type UI添加自定义文章类型对于新手来说最简单不过了,下载安装后,在插件栏启用一下,就可以开始添加文章类型了 ...

  2. MyEclipse6.6 汉化过程

                                                                                                         ...

  3. python操作json

    概念 序列化(Serialization):将对象的状态信息转换为可以存储或可以通过网络传输的过程,传输的格式可以是JSON.XML等.反序列化就是从存储区域(JSON,XML)读取反序列化对象的状态 ...

  4. 浅谈ES5的const以及strict mode

    了解你使用的JavaScript版本是很重要的,因为不同版本的JavaScript对某些语法或者特性的支持情况是不一样的,下面就来举一些例子来说明一下.首先来看一下const关键字,学过比如Java, ...

  5. Android开发之SD卡上文件操作

    1. 得到存储设备的目录:/SDCARD(一般情况下) SDPATH=Environment.getExternalStorageDirectory()+"/"; 2. 判断SD卡 ...

  6. Xcode使用版本

    Xcode6中创建分类.协议等文件的方法 Xcode 5.1.1 与 Xcode 6.0.1 的共存之路 http://jingyan.baidu.com/article/1612d500457df1 ...

  7. 头文件中的#ifndef/#define/#endif 的作用

    在一个大的软件工程里面,可能会有多个文件同时包含一个头文件,当这些文件编译链接成一个可执行文件时,就会出现大量重定义的错误.在头文件中实用#ifndef #define #endif能避免头文件的重定 ...

  8. matlab函数集锦

    matlab函数集锦 matlab函数集锦ISFINITE(X), ISINF(X), or ISNAN(X)pwd 当前目录eval 执行matlab函数CONV2(  ,'same')  卷积F  ...

  9. POI刷新数据后的函数(公式)更新问题

    使用POI将Excel模板中的数据进行更新,这应该是很常见的操作 下面就贴上我的一小段代码 public class ModifyExcel { /** * @param fileName Excel ...

  10. Machine Learning for hackers读书笔记(七)优化:密码破译

    #凯撒密码:将每一个字母替换为字母表中下一位字母,比如a变成b. english.letters <- c('a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i' ...