「JSOI2015」最小表示

传送门

很显然的一个结论:一条边 \(u \to v\) 能够被删去,当且仅当至少存在一条其它的路径从 \(u\) 通向 \(v\) 。

所以我们就建出正反两张图,对每个点开两个 bitset 维护它与其他点的连通性,这个可以通过拓扑排序预处理。

然后就枚举每一条边,拿两个端点的两个 bitset 与一下即可判断出这条边是否可以删去。

参考代码:

#include <cstdio>
#include <bitset>
#define rg register
#define file(x) freopen(x".in", "r", stdin), freopen(x".out", "w", stdout)
using namespace std;
template < class T > inline void read(T& s) {
s = 0; int f = 0; char c = getchar();
while ('0' > c || c > '9') f |= c == '-', c = getchar();
while ('0' <= c && c <= '9') s = s * 10 + c - 48, c = getchar();
s = f ? -s : s;
} const int _ = 3e4 + 5, __ = 1e5 + 5; int tot, phead[_], rhead[_]; struct Edge { int v, nxt; } edge[__ << 1];
inline void Add_edge(int* head, int u, int v) { edge[++tot] = (Edge) { v, head[u] }, head[u] = tot; } int n, m, x[__], y[__], pdgr[_], rdgr[_];
bitset < _ > pbs[_], rbs[_]; inline void toposort(int* head, int* dgr, bitset < _ > * bs) {
static int hd, tl, Q[_];
hd = tl = 0;
for (rg int i = 1; i <= n; ++i) if (!dgr[i]) Q[++tl] = i;
while (hd < tl) {
int u = Q[++hd];
for (rg int i = head[u]; i; i = edge[i].nxt) {
int v = edge[i].v; bs[v] |= bs[u], bs[v][u] = 1;
if (!--dgr[v]) Q[++tl] = v;
}
}
} int main() {
#ifndef ONLINE_JUDGE
file("cpp");
#endif
read(n), read(m);
for (rg int i = 1; i <= m; ++i) {
read(x[i]), read(y[i]);
Add_edge(phead, x[i], y[i]), ++pdgr[y[i]];
Add_edge(rhead, y[i], x[i]), ++rdgr[x[i]];
}
toposort(phead, pdgr, rbs), toposort(rhead, rdgr, pbs);
int ans = 0;
for (rg int i = 1; i <= m; ++i) ans += (pbs[x[i]] & rbs[y[i]]).any();
printf("%d\n", ans);
return 0;
}

「JSOI2015」最小表示的更多相关文章

  1. 「JSOI2015」串分割

    「JSOI2015」串分割 传送门 首先我们会有一个贪心的想法:分得越均匀越好,因为长的绝对比短的大. 那么对于最均匀的情况,也就是 \(k | n\) 的情况,我们肯定是通过枚举第一次分割的位置,然 ...

  2. 「JSOI2015」圈地

    「JSOI2015」圈地 传送门 显然是最小割. 首先对于所有房子,权值 \(> 0\) 的连边 \(s \to i\) ,权值 \(< 0\) 的连边 \(i \to t\) ,然后对于 ...

  3. 「JSOI2015」isomorphism

    「JSOI2015」isomorphism 传送门 我们还是考虑树哈希来判同构. 但是我们需要使用一些特殊的手段来特殊对待假节点. 由于是无向树,我们首先求出重心,然后以重心为根跑树哈希. 此处我们不 ...

  4. 「JSOI2015」symmetry

    「JSOI2015」symmetry 传送门 我们先考虑构造出原正方形经过 \(4\) 种轴对称变换以及 \(2\) 种旋转变换之后的正方形都构造出来,然后对所得的 \(7\) 个正方形都跑一遍二维哈 ...

  5. 「JSOI2015」地铁线路

    「JSOI2015」地铁线路 传送门 第一问很简单:对于每条线路建一个点,然后所有该条线路覆盖的点向它连边,权值为 \(1\) ,然后它向所有线路上的点连边,权值为 \(0\) . 然后,跑一边最短路 ...

  6. 「JSOI2015」染色问题

    「JSOI2015」染色问题 传送门 虽然不是第一反应,不过还是想到了要容斥. 题意转化:需要求满足 \(N + M + C\) 个条件的方案数. 然后我们就枚举三个数 \(i, j, k\) ,表示 ...

  7. 「JSOI2015」套娃

    「JSOI2015」套娃 传送门 考虑贪心. 首先我们假设所有的套娃都互相不套. 然后我们考虑合并两个套娃 \(i\),\(j\) 假设我们把 \(i\) 套到 \(j\) 里面去,那么就可以减少 \ ...

  8. 「JSOI2015」非诚勿扰

    「JSOI2015」非诚勿扰 传送门 我们首先考虑一名女性选中她列表里第 \(x\) 名男性的概率(假设她列表里共有 \(s\) 名男性): \[ P = p \times (1 - p) ^ {x ...

  9. 「JSOI2015」salesman

    「JSOI2015」salesman 传送门 显然我们为了使收益最大化就直接从子树中选大的就好了. 到达次数的限制就是限制了可以选的子树的数量,因为每次回溯上来都会减一次到达次数. 多种方案的判断就是 ...

随机推荐

  1. JS实现“隐藏与显示”功能(多种方法)

    1,通过按钮实现隐藏与显示: 这个是通过按钮点击实现的隐藏与显示,具体代码如下: ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 ...

  2. ASP.NET MVC4中对JS和CSS的引用

    https://www.cnblogs.com/madyina/p/3702314.html ASP.NET MVC4中对JS和CSS的引用又做了一次变化,在MVC3中我们这样引用资源文件: < ...

  3. TI DaVinci(达芬奇)入门

    (转载来自 德州仪器半导体技术(上海)有限公司 通用DSP 技术应用工程师 崔晶 德州仪器(TI)的第一颗达芬奇(DaVinci)芯片(处理器)DM6446已经问世快三年了.继DM644x之后,TI又 ...

  4. 剑指offer 62. 二叉搜索树的第 k 个结点

    62. 二叉搜索树的第 k 个结点 题目描述 给定一棵二叉搜索树,请找出其中的第k小的结点.例如, (5,3,7,2,4,6,8)    中,按结点数值大小顺序第三小结点的值为4. 法一: 非递归中序 ...

  5. 小匠第二周期打卡笔记-Task03

    一.过拟合欠拟合及其解决方案 知识点记录 模型选择.过拟合和欠拟合: 训练误差和泛化误差: 训练误差 :模型在训练数据集上表现出的误差, 泛化误差 : 模型在任意一个测试数据样本上表现出的误差的期望, ...

  6. Java Web代码审计流程与漏洞函数

    常见框架与组合 常见框架 Struts2 SpringMVC Spring Boot 框架执行流程 View层:视图层 Controller层:表现层 Service层:业务层 Dom层:持久层 常见 ...

  7. POJ3273 Monthly Expense (二分最小化花费)

    链接:http://poj.org/problem?id=3273 题意:FJ想把n天分成m组,每组是连续的,同一组的花费加起来算,求所分组情况中最高花费的最低值 思路:二分答案.二分整数范围内的花费 ...

  8. php核心技术与最佳实践--- oop

    <?php /** * Created by PhpStorm. * User: cl * Date: 2019/8/12 * Time: 7:08 */ /*oop*/ class Perso ...

  9. 线程同步器CountDownLatch

    Java程序有的时候在主线程中会创建多个线程去执行任务,然后在主线程执行完毕之前,把所有线程的任务进行汇总,以前可以用线程的join方法,但是这个方法不够灵活,我们可以使用CountDownLatch ...

  10. c#中convert.toInt32和int.parse()和强制类型转换的区别

    string a="123"; int i=(int)a; 这是会出现错误因为:强制类型转换只能转换值类型不能转换引用类型 string属于引用类型    强制类型转换时如果值类型 ...