const int POW = ;
void dfs(int u,int fa){
d[u]=d[fa]+;
p[u][]=fa;
for(int i=;i<POW;i++) p[u][i]=p[p[u][i-]][i-];
int sz=edge[u].size();
for(int i=;i<sz;i++){
int v=edge[u][i];
if(v==fa) continue;
dfs(v,u);
}
}
int lca( int a, int b ){
if( d[a] > d[b] ) a ^= b, b ^= a, a ^= b;
if( d[a] < d[b] ){
int del = d[b] - d[a];
for( int i = ; i < POW; i++ ) if(del&(<<i)) b=p[b][i];
}
if( a != b ){
for( int i = POW-; i >= ; i-- )
if( p[a][i] != p[b][i] )
a = p[a][i] , b = p[b][i];
a = p[a][], b = p[b][];
}
return a;
}

lca 倍增模版的更多相关文章

  1. 【codevs2370】小机房的树 LCA 倍增

    2370 小机房的树  时间限制: 1 s  空间限制: 256000 KB  题目等级 : 钻石 Diamond 题目描述 Description 小机房有棵焕狗种的树,树上有N个节点,节点标号为0 ...

  2. LCA倍增算法

    LCA 算法是一个技巧性很强的算法. 十分感谢月老提供的模板. 这里我实现LCA是通过倍增,其实就是二进制优化. 任何一个数都可以有2的阶数实现 例如16可以由1 2 4 8组合得到 5可以由1 2 ...

  3. 洛谷 3379 最近公共祖先(LCA 倍增)

    洛谷 3379 最近公共祖先(LCA 倍增) 题意分析 裸的板子题,但是注意这题n上限50w,我用的边表,所以要开到100w才能过,一开始re了两发,发现这个问题了. 代码总览 #include &l ...

  4. CodeVs.2370 小机房的树 ( LCA 倍增 最近公共祖先)

    CodeVs.2370 小机房的树 ( LCA 倍增 最近公共祖先) 题意分析 小机房有棵焕狗种的树,树上有N个节点,节点标号为0到N-1,有两只虫子名叫飘狗和大吉狗,分居在两个不同的节点上.有一天, ...

  5. POJ.1986 Distance Queries ( LCA 倍增 )

    POJ.1986 Distance Queries ( LCA 倍增 ) 题意分析 给出一个N个点,M条边的信息(u,v,w),表示树上u-v有一条边,边权为w,接下来有k个询问,每个询问为(a,b) ...

  6. POJ.1330 Nearest Common Ancestors (LCA 倍增)

    POJ.1330 Nearest Common Ancestors (LCA 倍增) 题意分析 给出一棵树,树上有n个点(n-1)条边,n-1个父子的边的关系a-b.接下来给出xy,求出xy的lca节 ...

  7. LCA(倍增在线算法) codevs 2370 小机房的树

    codevs 2370 小机房的树 时间限制: 1 s  空间限制: 256000 KB  题目等级 : 钻石 Diamond 题目描述 Description 小机房有棵焕狗种的树,树上有N个节点, ...

  8. LCA(最近公共祖先)——LCA倍增法

    一.前人种树 博客:最近公共祖先 LCA 倍增法 博客:浅谈倍增法求LCA 二.沙场练兵 题目:POJ 1330 Nearest Common Ancestors 代码: const int MAXN ...

  9. POJ - 1330 Nearest Common Ancestors(dfs+ST在线算法|LCA倍增法)

    1.输入树中的节点数N,输入树中的N-1条边.最后输入2个点,输出它们的最近公共祖先. 2.裸的最近公共祖先. 3. dfs+ST在线算法: /* LCA(POJ 1330) 在线算法 DFS+ST ...

随机推荐

  1. Django 模型层关系映射

    一.一对一映射 1.什么是一对一 A表中的一条记录只能与B表中的一条记录相关联如:一夫一妻制 2.语法 允许在关联的两个类的任何一个类中 增加: 属性 = models.OneToOneField(E ...

  2. Java中的注解到底是如何工作的?

    作者:人晓 www.importnew.com/10294.html 自Java5.0版本引入注解之后,它就成为了Java平台中非常重要的一部分.开发过程中,我们也时常在应用代码中会看到诸如@Over ...

  3. TreeMap和TreeSet在排序时如何比较元素,Collections工具类中的sort()方法如何比较元素

    TreeSet和TreeMap排序时比较元素要求元素对象必须实现Comparable接口 Collections的sort方法比较元素有两种方法: 元素对象实现Comparable接口 实体类Dog ...

  4. Inversion of Control 控制反转 有什么好处

    作者:Mingqi链接:https://www.zhihu.com/question/23277575/answer/169698662来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转 ...

  5. 隐式激活Activity

  6. MyBatis操作数据库(基本增删改查)

    一.准备所需工具(jar包和数据库驱动) 网上搜索下载就可以 二.新建一个Java project 1.将下载好的包导入项目中,build path 2.编写MyBatis配置文件:主要填写prope ...

  7. ZedGraph怎样在生成曲线时随机生成不一样的颜色

    场景 在使用ZedGraph生成多条曲线时为了能区分曲线颜色,要求随机设置曲线颜色. 首先从System.Drawing.Color中获取所有颜色的对象的数组,然后将其顺序打乱随机排序,然后在生成曲线 ...

  8. master挂了的话pm2怎么处理 使用pm2方便开启node集群模式

    本文为转载 Introduction As you would probably know, Node.js is a platform built on Chrome's JavaScript ru ...

  9. Tomcat 在IE中下载rar文件直接以乱码方式打开解决方案

    这几天一直很纳闷,在Tomcat部署的网站中的下载文件中,如果文件是rar类型的,一点击下载rar文件就直接打开,并且出现乱码,右键另存为浏览器也是默认为html格式,一直以为是浏览器IE的问题,后来 ...

  10. PHP水仙花数的实现

    php水仙花数是什么? 水仙花数是指一个 n 位数 ( n≥3 ),它的每个位上的数字的 n 次幂之和等于它本身.(例如:1^3 + 5^3 + 3^3 = 153)三位的水仙花数共有4个:153,3 ...