Text Style Transfer论文笔记
Text Style Transfer主要是指Non-Parallel Data条件下的,具体的paper list见: https://github.com/fuzhenxin/Style-Transfer-in-Text
Delete, Retrieve, Generate: A Simple Approach to Sentiment and Style Transfer (NAACL 2018)
Transforming a sentence to alter a specific attribute while preserving its attribute-independent content.
Training data includes only sentences labeled with their attribute, but not pairs of sentences that differ only in their attributes
Our strongest method extracts content words by deleting phrases associated with the sentence's original attribute value, retrieves new phrases associated with the target attribute, and use a neural model to fluently combine these into a final output.
Training:
For DELETEONLY:
Reconstruct the sentences in the training corpus given their content and original attribute value by maximizing:
For DELETEANDRETRIEVE: apply some noise to a(x, vsrc) to produce a'(x, vsrc)
这篇文章采用Reconstruct的方法来训练模型生成风格化的描述。
Unsupervised Controllable Text Formalization (AAAI 2019)
The crux of the framework is a deep neural encoder-decoder that is reinforced with text-transformation knowledge through auxiliary modules (called scorers)
Style Transformer: Unpaired Text Style Transfer without Disentangled Latent Representation (ACL 2019)
Transfomer Network
To enable style control in the standard Transformer framework, add an extra style embedding as input to the Transformer encoder
z stands for the representation of the encoded inputs
Discriminator Network
Conditional Discriminator: a sentence x and a proposal style s are feed into discriminator and the discriminator is asked to answer whether the input sentence has the corresponding style.
Multi-class Discriminator: only one sentence is feed into the discriminator, and the discriminator aims to answer the style of this sentence.
Learning Algorithm
Discriminator Learning:
conditional discriminator
multi-class discriminator
Transformer Network Learning:
Self Reconstruction
Cycle Reconstruction
Style Controlling
Text Style Transfer论文笔记的更多相关文章
- Perceptual Losses for Real-Time Style Transfer and Super-Resolution and Super-Resolution 论文笔记
Perceptual Losses for Real-Time Style Transfer and Super-Resolution and Super-Resolution 论文笔记 ECCV 2 ...
- 《Perceptual Losses for Real-Time Style Transfer and Super-Resolution》论文笔记
参考 http://blog.csdn.net/u011534057/article/details/55052304 代码 https://github.com/yusuketomoto/chain ...
- 论文笔记之:Generative Adversarial Text to Image Synthesis
Generative Adversarial Text to Image Synthesis ICML 2016 摘要:本文将文本和图像练习起来,根据文本生成图像,结合 CNN 和 GAN 来有效的 ...
- 论文笔记之:Natural Language Object Retrieval
论文笔记之:Natural Language Object Retrieval 2017-07-10 16:50:43 本文旨在通过给定的文本描述,在图像中去实现物体的定位和识别.大致流程图如下 ...
- [C4W4] Convolutional Neural Networks - Special applications: Face recognition & Neural style transfer
第四周:Special applications: Face recognition & Neural style transfer 什么是人脸识别?(What is face recogni ...
- 神经风格转换Neural Style Transfer a review
原文:http://mp.weixin.qq.com/s/t_jknoYuyAM9fu6CI8OdNw 作者:Yongcheng Jing 等 机器之心编译 风格迁移是近来人工智能领域内的一个热门研究 ...
- 【论文笔记系列】AutoML:A Survey of State-of-the-art (下)
[论文笔记系列]AutoML:A Survey of State-of-the-art (上) 上一篇文章介绍了Data preparation,Feature Engineering,Model S ...
- 论文笔记之:Visual Tracking with Fully Convolutional Networks
论文笔记之:Visual Tracking with Fully Convolutional Networks ICCV 2015 CUHK 本文利用 FCN 来做跟踪问题,但开篇就提到并非将其看做 ...
- Deep Learning论文笔记之(八)Deep Learning最新综述
Deep Learning论文笔记之(八)Deep Learning最新综述 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完 ...
随机推荐
- Otracle数据库定时任务--dbms_job
一.dbms_job涉及到的知识点 1.创建job: variable jobno number; dbms_job.submit(:jobno, --job号 'your_procedure;'-- ...
- thinkphp5.0验证码使用
如果没有安装验证码类,可在composer.json 文件的require里面添加 "topthink/think-captcha":"1.*",然后compo ...
- 用div漂浮快实现与表单无关的多文件上传功能。
我项目有这个需求,多文件上传,而且要及时显示到表单上,这样的话就不能与表单相关. 由于我对前端不熟,我就实现了这么一个功能,通过button触发一个div漂浮块,然后多文件上传,之后通过js把文件名显 ...
- Spring Security 4 使用@PreAuthorize,@PostAuthorize, @Secured, EL实现方法安全
[相关已翻译的本系列其他文章,点击分类里面的spring security 4] 上一篇:Spring Security 4 整合Hibernate 实现持久化登录验证(带源码) 原文地址:http: ...
- 云原生生态周报 Vol. 8 | Gartner 发布云原生趋势
业界要闻 Gartner 发布云原生基础设施未来的八大趋势:权威分析机构 Gartner 在对 2020 年技术趋势的展望当中指出:“预计2020年所有领先的容器管理软件均内置服务融合技术,到2022 ...
- Hbase API: 写入Bigtable.
- Android 高仿新浪微博底部导航栏,实现双击首页Tab,页面的ListView滚动、刷新
现在很多APP,如微信.QQ.微博等等,它们的主页面都无一例外的选择使用底部Tab导航, 通过这种方式,可以很好的把页面层级分化,很好的提高用户体验.相信,很多Android开发者,都使用到过这种经典 ...
- 通过GDB重新获得进程的输出
有时通过SecureCRT或者Putty远程ssh到主机上执行某个进程,因长时间没有交互导致ssh断链,此时该进程由init进程收留.该进程的输出也就无法获得了. 这种情况下,可以利用gdb重新获得该 ...
- Websocket 群聊功能
websocket 群聊 前提关闭防火墙 写入代码 from flask import Flask,request,render_template from geventwebsocket.handl ...
- Python--day19--time模块
时间戳转化成结构化时间: 本地时间转换成时间字符串: 时间模块 和时间有关系的我们就要用到时间模块.在使用模块之前,应该首先导入这个模块. #常用方法 1.time.sleep(secs) (线程)推 ...