MNIST数据集下载:

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) #one_hot 独热编码,也叫一位有效编码。在任意时候只有一位为1,其他位都是0

1 使用逻辑回归:

import tensorflow as tf

# 导入数据集
#from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) # 变量
batch_size = 50 #训练的x(image),y(label)
# x = tf.Variable()
# y = tf.Variable()
x = tf.placeholder(tf.float32, [None, 784])
y = tf.placeholder(tf.float32, [None, 10]) # 模型权重
#[55000,784] * W = [55000,10]
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10])) # 用softmax构建逻辑回归模型
pred = tf.nn.softmax(tf.matmul(x, W) + b) # 损失函数(交叉熵)
cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(pred), 1)) # 低度下降
optimizer = tf.train.GradientDescentOptimizer(0.01).minimize(cost) # 初始化所有变量
init = tf.global_variables_initializer() # 加载session图
with tf.Session() as sess:
sess.run(init) # 开始训练
for epoch in range(25):
avg_cost = 0. total_batch = int(mnist.train.num_examples/batch_size)
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
sess.run(optimizer, {x: batch_xs,y: batch_ys})
#计算损失平均值
avg_cost += sess.run(cost,{x: batch_xs,y: batch_ys}) / total_batch
if (epoch+1) % 5 == 0:
print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost)) print("运行完成") # 测试求正确率
correct = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))
print("正确率:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels}))

结果:

Extracting MNIST_data/train-images-idx3-ubyte.gz
Extracting MNIST_data/train-labels-idx1-ubyte.gz
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
Epoch: 0005 cost= 0.394426425
Epoch: 0010 cost= 0.344705163
Epoch: 0015 cost= 0.323814137
Epoch: 0020 cost= 0.311426675
Epoch: 0025 cost= 0.302971779
运行完成
正确率: 0.9188

2 使用神经网络:

import tensorflow as tf
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data def init_weights(shape):
return tf.Variable(tf.random_normal(shape, stddev=0.01)) def model(X, w_h, w_o):
h = tf.nn.sigmoid(tf.matmul(X, w_h)) # this is a basic mlp, think 2 stacked logistic regressions
return tf.matmul(h, w_o) # note that we dont take the softmax at the end because our cost fn does that for us mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
trX, trY, teX, teY = mnist.train.images, mnist.train.labels, mnist.test.images, mnist.test.labels X = tf.placeholder("float", [None, 784])
Y = tf.placeholder("float", [None, 10]) w_h = init_weights([784, 625]) # create symbolic variables
w_o = init_weights([625, 10]) py_x = model(X, w_h, w_o) cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=py_x, labels=Y)) # compute costs
train_op = tf.train.GradientDescentOptimizer(0.05).minimize(cost) # construct an optimizer
predict_op = tf.argmax(py_x, 1) # Launch the graph in a session
with tf.Session() as sess:
# you need to initialize all variables
tf.global_variables_initializer().run() for i in range(100):
for start, end in zip(range(0, len(trX), 128), range(128, len(trX)+1, 128)):
sess.run(train_op, feed_dict={X: trX[start:end], Y: trY[start:end]})
print(i, np.mean(np.argmax(teY, axis=1) ==
sess.run(predict_op, feed_dict={X: teX})))

结果:

0 0.6898
1 0.8244
2 0.8635
3 0.881
4 0.8881
5 0.8931
6 0.8972
7 0.9005
8 0.9042
9 0.9062

3 使用卷积神经网络:

import tensorflow as tf
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data batch_size = 128
test_size = 256 def init_weights(shape):
return tf.Variable(tf.random_normal(shape, stddev=0.01)) def model(X, w, w2, w3, w4, w_o, p_keep_conv, p_keep_hidden):
l1a = tf.nn.relu(tf.nn.conv2d(X, w, # l1a shape=(?, 28, 28, 32)
strides=[1, 1, 1, 1], padding='SAME'))
l1 = tf.nn.max_pool(l1a, ksize=[1, 2, 2, 1], # l1 shape=(?, 14, 14, 32)
strides=[1, 2, 2, 1], padding='SAME')
l1 = tf.nn.dropout(l1, p_keep_conv) l2a = tf.nn.relu(tf.nn.conv2d(l1, w2, # l2a shape=(?, 14, 14, 64)
strides=[1, 1, 1, 1], padding='SAME'))
l2 = tf.nn.max_pool(l2a, ksize=[1, 2, 2, 1], # l2 shape=(?, 7, 7, 64)
strides=[1, 2, 2, 1], padding='SAME')
l2 = tf.nn.dropout(l2, p_keep_conv) l3a = tf.nn.relu(tf.nn.conv2d(l2, w3, # l3a shape=(?, 7, 7, 128)
strides=[1, 1, 1, 1], padding='SAME'))
l3 = tf.nn.max_pool(l3a, ksize=[1, 2, 2, 1], # l3 shape=(?, 4, 4, 128)
strides=[1, 2, 2, 1], padding='SAME')
l3 = tf.reshape(l3, [-1, w4.get_shape().as_list()[0]]) # reshape to (?, 2048)
l3 = tf.nn.dropout(l3, p_keep_conv) l4 = tf.nn.relu(tf.matmul(l3, w4))
l4 = tf.nn.dropout(l4, p_keep_hidden) pyx = tf.matmul(l4, w_o)
return pyx mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
trX, trY, teX, teY = mnist.train.images, mnist.train.labels, mnist.test.images, mnist.test.labels
trX = trX.reshape(-1, 28, 28, 1) # 28x28x1 input img
teX = teX.reshape(-1, 28, 28, 1) # 28x28x1 input img X = tf.placeholder("float", [None, 28, 28, 1])
Y = tf.placeholder("float", [None, 10]) w = init_weights([3, 3, 1, 32]) # 3x3x1 conv, 32 outputs
w2 = init_weights([3, 3, 32, 64]) # 3x3x32 conv, 64 outputs
w3 = init_weights([3, 3, 64, 128]) # 3x3x32 conv, 128 outputs
w4 = init_weights([128 * 4 * 4, 625]) # FC 128 * 4 * 4 inputs, 625 outputs
w_o = init_weights([625, 10]) # FC 625 inputs, 10 outputs (labels) p_keep_conv = tf.placeholder("float")
p_keep_hidden = tf.placeholder("float")
py_x = model(X, w, w2, w3, w4, w_o, p_keep_conv, p_keep_hidden) cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=py_x, labels=Y))
train_op = tf.train.RMSPropOptimizer(0.001, 0.9).minimize(cost)
predict_op = tf.argmax(py_x, 1) # Launch the graph in a session
with tf.Session() as sess:
# you need to initialize all variables
tf.global_variables_initializer().run() for i in range(10):
training_batch = zip(range(0, len(trX), batch_size),
range(batch_size, len(trX)+1, batch_size))
for start, end in training_batch:
sess.run(train_op, feed_dict={X: trX[start:end], Y: trY[start:end],
p_keep_conv: 0.8, p_keep_hidden: 0.5}) test_indices = np.arange(len(teX)) # Get A Test Batch
np.random.shuffle(test_indices)
test_indices = test_indices[0:test_size] print(i, np.mean(np.argmax(teY[test_indices], axis=1) ==
sess.run(predict_op, feed_dict={X: teX[test_indices],
Y: teY[test_indices],
p_keep_conv: 1.0,
p_keep_hidden: 1.0})))

结果:

0 0.9453125
1 0.9765625
2 0.9921875
3 0.98828125
4 0.984375
5 0.9921875
6 0.984375
7 0.9921875
8 0.98828125
9 0.99609375

三种方法实现MNIST 手写数字识别的更多相关文章

  1. 【TensorFlow-windows】(三) 多层感知器进行手写数字识别(mnist)

    主要内容: 1.基于多层感知器的mnist手写数字识别(代码注释) 2.该实现中的函数总结 平台: 1.windows 10 64位 2.Anaconda3-4.2.0-Windows-x86_64. ...

  2. 基于tensorflow的MNIST手写数字识别(二)--入门篇

    http://www.jianshu.com/p/4195577585e6 基于tensorflow的MNIST手写字识别(一)--白话卷积神经网络模型 基于tensorflow的MNIST手写数字识 ...

  3. Android+TensorFlow+CNN+MNIST 手写数字识别实现

    Android+TensorFlow+CNN+MNIST 手写数字识别实现 SkySeraph 2018 Email:skyseraph00#163.com 更多精彩请直接访问SkySeraph个人站 ...

  4. Tensorflow之MNIST手写数字识别:分类问题(1)

    一.MNIST数据集读取 one hot 独热编码独热编码是一种稀疏向量,其中:一个向量设为1,其他元素均设为0.独热编码常用于表示拥有有限个可能值的字符串或标识符优点:   1.将离散特征的取值扩展 ...

  5. 基于TensorFlow的MNIST手写数字识别-初级

    一:MNIST数据集    下载地址 MNIST是一个包含很多手写数字图片的数据集,一共4个二进制压缩文件 分别是test set images,test set labels,training se ...

  6. mnist手写数字识别——深度学习入门项目(tensorflow+keras+Sequential模型)

    前言 今天记录一下深度学习的另外一个入门项目——<mnist数据集手写数字识别>,这是一个入门必备的学习案例,主要使用了tensorflow下的keras网络结构的Sequential模型 ...

  7. Pytorch入门——手把手教你MNIST手写数字识别

    MNIST手写数字识别教程 要开始带组内的小朋友了,特意出一个Pytorch教程来指导一下 [!] 这里是实战教程,默认读者已经学会了部分深度学习原理,若有不懂的地方可以先停下来查查资料 目录 MNI ...

  8. TensorFlow——MNIST手写数字识别

    MNIST手写数字识别 MNIST数据集介绍和下载:http://yann.lecun.com/exdb/mnist/   一.数据集介绍: MNIST是一个入门级的计算机视觉数据集 下载下来的数据集 ...

  9. Tensorflow实现MNIST手写数字识别

    之前我们讲了神经网络的起源.单层神经网络.多层神经网络的搭建过程.搭建时要注意到的具体问题.以及解决这些问题的具体方法.本文将通过一个经典的案例:MNIST手写数字识别,以代码的形式来为大家梳理一遍神 ...

随机推荐

  1. curl命令测试服务器是否支持断点续传

     通过curl命令测试服务器是否支持断点续传 curl -i --range 0-9 http://www.baidu.com/img/bdlogo.gif HTTP/1.1 206 Partial ...

  2. 伪类元素before&after

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  3. IconFont 图标的3种引用方式

    第一步:进入阿里巴巴矢量图网站:http://www.iconfont.cn/   阿里巴巴矢量图 第二步:搜索你分类的关键字---然后加入购物车,下载到本地,然后解压,会将合并后的字体文件及自动生成 ...

  4. EF批量添加

    1.首先,打开工具——NuGet包管理器——管理解决方案的NoGet程序包——搜索Z.EntityFramework.Extensions 点击安装!!! codefirst定义一个实体,用EF的方法 ...

  5. BOM的介绍

    BOM的概念 BOM(Browser Object Model) 是指浏览器对象模型,浏览器对象模型提供了独立于内容的.可以与浏览器窗口进行互动的对象结构.BOM由多个对象组成,其中代表浏览器窗口的W ...

  6. LUOGU P1501 [国家集训队]Tree II (lct)

    传送门 解题思路 \(lct\),比较模板的一道题,路径加和乘的维护标记与线段树\(2\)差不多,然后剩下就没啥了.但调了我将近一下午.. 代码 #include<iostream> #i ...

  7. python中os模块获取路径的几种方式

    一.代码 import os BASE_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) p ...

  8. [NOI.AC] palindrome

    思路: \(50pts\) \(f[l,r]\)表示区间\([l,r]\)能够变成多少个串,转移枚举\(l\),利用\(hash\)判字符串相等. 复杂度\(O(Tn^3)\) \(70pts\) 考 ...

  9. Python中的startswith和endswith函数使用实例

    Python中的startswith和endswith函数使用实例 在Python中有两个函数分别是startswith()函数与endswith()函数,功能都十分相似,startswith()函数 ...

  10. JVM内核-原理、诊断与优化学习笔记(三):常用JVM配置参数

    文章目录 Trace跟踪参数 -verbose:gc (打开gc的跟踪情况) -XX:+printGC(打开gc的log开关,如果在运行的过程中出现了gc,就会打印出相关的信息.) -XX:+Prin ...