Purpose:

characterize the evolution of dynamical systems. In this paper, a novel method based on epsilon-recurrence networks is proposed for the study of the evolution properties of dynamical systems.

Methodology:

1. convert time series to a high-dimensional recurrence network and a corresponding low-dimensional recurrence network.

network dimension L  represents the number of state vectors that form a node in the network.

phase space reconstruction based on Takens' embedding theorem. -----------> a series of state vectors R1, R2, ..., Rn` can be obtained. ----------------> construct a high dimensional recurrence network (RN) and a low dimensional RN.  每个结点代表着a segment of the phase space trajectory. distance matrix Dl between nodes can be obtained by equation 2, which reflects the distance between segments of the phase space trajectories.  ---------> obtain the adjacency matrix.

The construction of the network is highly dependent on the threshold,  , which should be tailored to specific questions that need to be solved. --------------> choose a fixed link density.

Therefore, the similarity between the two networks can reflect the evolution properties of the studied dynamical systems. ?why?

?? 结果不明白.

Basic knowledge:

1. phase space  相空间重构

如果把一个时间序列看成是由一个确定性的非线性动力系统产生的, 要考虑的是以下反问题: 如何有时间序列来恢复并刻画原动力系统.

The fundamental starting point of many approaches in nonlinear data analysis is the construction of a phase space portrait of the considered system. The state of a system can be described by its state variables $x^1(t), x^2(t), ... ,x^d(t)$, for example the both state variables temperature and pressure for a thermodynamic system. The d state variables at time t form a vector in a d-dimensional space which is called phase space. The state of a system typically changes in time, and, hence, the vector in the phase space describes a trajectory representing the time evolution, the dynamics, of the system. The shape of the trajectory gives hints about the system; periodic or chaotic systems have characteristic phase space portraits.

The observation of a real process usually does not yield all possible state variables. Either not all state variables are known or not all of them can be measured. However, due to the couplings between the system's components, we can reconstruct a phase space trajectory from a single observation u_i by a time delay embedding (Takens, 1981): 由时间序列恢复原系统最常用的方法是利用Takens的延迟嵌入定理.

where $m$ is the embedding dimension and $\tau$ is the time delay (index based; the real time delay is $\tau\,\Delta t$). This reconstruction of the phase space is called time delay embedding. The phase space reconstruction is not exactly the same to the original phase space, but its topological properties are preserved, if the embedding dimension is large enough (the embedding dimension has to be larger then twice the phase space dimension, or exactly m > 2 d + 1). And this reconstructed trajectory is sufficient enough for a subsequent analysis.

Now we look at the phase space portrait of an harmonic oscillation, like an undamped pendulum. First we create the position vector y1 and the velocity vector y2

x = 0 : pi/10 : 6 * pi;
y1 = sin(x);
y2 = cos(x);

The phase space portrait

plot(y1, y2)
xlabel('y_1'), ylabel('y_2')

2. 非线性时间序列预测.

基本方法:

局域预测法: 局部平均预测法, 局部线性预测法,局部多项式预测法.

全局预测法: 神经网络, 小波网络, 遗传算法.

from

A New Recurrence-Network-Based Time Series Analysis Approach for Characterizing System Dynamics - Guangyu Yang, Daolin Xu * and Haicheng Zhang的更多相关文章

  1. PP: Multilevel wavelet decomposition network for interpretable time series analysis

    Problem: the important frequency information is lack of effective modelling. ?? what is frequency in ...

  2. (转)LSTM NEURAL NETWORK FOR TIME SERIES PREDICTION

    LSTM NEURAL NETWORK FOR TIME SERIES PREDICTION Wed 21st Dec 2016   Neural Networks these days are th ...

  3. (zhuan) LSTM Neural Network for Time Series Prediction

    LSTM Neural Network for Time Series Prediction Wed 21st Dec 2016 Neural Networks these days are the ...

  4. 论文笔记:ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks

    ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks2018-03-05  11:13:05   ...

  5. DeepCoder: A Deep Neural Network Based Video Compression

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! Abstract: 在深度学习的最新进展的启发下,我们提出了一种基于卷积神经网络(CNN)的视频压缩框架DeepCoder.我们分别对预测 ...

  6. 论文笔记:(CVPR2019)Relation-Shape Convolutional Neural Network for Point Cloud Analysis

    目录 摘要 一.引言 二.相关工作 基于视图和体素的方法 点云上的深度学习 相关性学习 三.形状意识表示学习 3.1关系-形状卷积 建模 经典CNN的局限性 变换:从关系中学习 通道提升映射 3.2性 ...

  7. 论文翻译:2019_Deep Neural Network Based Regression Approach for A coustic Echo Cancellation

    论文地址:https://dl.acm.org/doi/abs/10.1145/3330393.3330399 基于深度神经网络的回声消除回归方法 摘要 声学回声消除器(AEC)的目的是消除近端传声器 ...

  8. 论文翻译:2020_Generative Adversarial Network based Acoustic Echo Cancellation

    论文地址:http://www.interspeech2020.org/uploadfile/pdf/Thu-1-10-5.pdf 基于GAN的回声消除 摘要 生成对抗网络(GANs)已成为语音增强( ...

  9. PP: A dual-stage attention-based recurrent neural network for time series prediction

    Problem: time series prediction The nonlinear autoregressive exogenous model: The Nonlinear autoregr ...

随机推荐

  1. QuantLib 金融计算——自己动手封装 Python 接口(2)

    目录 QuantLib 金融计算--自己动手封装 Python 接口(2) 概述 如何封装一项复杂功能? 寻找最小功能集合的策略 实践 估计期限结构参数 修改官方接口文件 下一步的计划 QuantLi ...

  2. Spring中@Value用法

    Spring中可以通过@Value注解,将properties配置文件中的属性值注入到java成员变量,配置和使用方法如下(大部分转自csdn,也有自己实验部分): 一.配置 首先,@value需要参 ...

  3. P1553 数字反转(升级版)(copy(),reverse(),find(),substr(),erase())

    题目描述 给定一个数,请将该数各个位上数字反转得到一个新数. 这次与 NOIp2011 普及组第一题不同的是:这个数可以是小数,分数,百分数,整数.整数反转是将所有数位对调:小数反转是把整数部分的数反 ...

  4. 安装Kubernetes到CentOS(Minikube)

    运行环境 系统版本:CentOS Linux release 7.6.1810 (Core) 软件版本:Docker-ce-18.06.0.Kubectl-1.15.0.Kubernetes-v1.1 ...

  5. Spring boot mvn

    https://www.cnblogs.com/xiebq/p/9181517.html https://www.cnblogs.com/sun-yang-/p/7700415.html https: ...

  6. 42.通过原生SQL语句进行操纵mysql数据库

    views.py文件中: from django.shortcuts import render # 导入connection模块 from django.db import connection d ...

  7. 2020省选模拟训练1 排列(perm)多项式exp+EGF

    这道题真的还是简单的一批..... 我当时要是参加考试的话该多好(凭这一道题就能进前 5 了) 十分显然的指数型生成函数. 令 $f[i]$ 表示有 $i$ 个点的答案. 然后显然有 $f[i]=\s ...

  8. 剑指offer-面试题13-机器人的运动范围-递归法

    /* 题目: 地上有一个m行n列的方格.一个机器人从坐标(0,0)的格子开始运动, 每次可向上.下.左.右移动一格,但不能进入行坐标和列坐标之和大于k的格子. 如,当k=18时,机器人能进入(35,3 ...

  9. linux centos7环境下安装apache2.4+php5.6+mysql5.6 安装及踩坑集锦(三)

    linux centos7环境下安装apache2.4+php5.6+mysql5.6 安装及踩坑集锦(三) 安装PHP 1.yum方式安装PHP方法同安装apache一样传送门:linux cent ...

  10. 阿里云oss 直传

    sts获取 参考https://help.aliyun.com/document_detail/28792.html?spm=a2c4g.11186623.6.786.6fb238dfI9iiqA 配 ...