Purpose:

characterize the evolution of dynamical systems. In this paper, a novel method based on epsilon-recurrence networks is proposed for the study of the evolution properties of dynamical systems.

Methodology:

1. convert time series to a high-dimensional recurrence network and a corresponding low-dimensional recurrence network.

network dimension L  represents the number of state vectors that form a node in the network.

phase space reconstruction based on Takens' embedding theorem. -----------> a series of state vectors R1, R2, ..., Rn` can be obtained. ----------------> construct a high dimensional recurrence network (RN) and a low dimensional RN.  每个结点代表着a segment of the phase space trajectory. distance matrix Dl between nodes can be obtained by equation 2, which reflects the distance between segments of the phase space trajectories.  ---------> obtain the adjacency matrix.

The construction of the network is highly dependent on the threshold,  , which should be tailored to specific questions that need to be solved. --------------> choose a fixed link density.

Therefore, the similarity between the two networks can reflect the evolution properties of the studied dynamical systems. ?why?

?? 结果不明白.

Basic knowledge:

1. phase space  相空间重构

如果把一个时间序列看成是由一个确定性的非线性动力系统产生的, 要考虑的是以下反问题: 如何有时间序列来恢复并刻画原动力系统.

The fundamental starting point of many approaches in nonlinear data analysis is the construction of a phase space portrait of the considered system. The state of a system can be described by its state variables $x^1(t), x^2(t), ... ,x^d(t)$, for example the both state variables temperature and pressure for a thermodynamic system. The d state variables at time t form a vector in a d-dimensional space which is called phase space. The state of a system typically changes in time, and, hence, the vector in the phase space describes a trajectory representing the time evolution, the dynamics, of the system. The shape of the trajectory gives hints about the system; periodic or chaotic systems have characteristic phase space portraits.

The observation of a real process usually does not yield all possible state variables. Either not all state variables are known or not all of them can be measured. However, due to the couplings between the system's components, we can reconstruct a phase space trajectory from a single observation u_i by a time delay embedding (Takens, 1981): 由时间序列恢复原系统最常用的方法是利用Takens的延迟嵌入定理.

where $m$ is the embedding dimension and $\tau$ is the time delay (index based; the real time delay is $\tau\,\Delta t$). This reconstruction of the phase space is called time delay embedding. The phase space reconstruction is not exactly the same to the original phase space, but its topological properties are preserved, if the embedding dimension is large enough (the embedding dimension has to be larger then twice the phase space dimension, or exactly m > 2 d + 1). And this reconstructed trajectory is sufficient enough for a subsequent analysis.

Now we look at the phase space portrait of an harmonic oscillation, like an undamped pendulum. First we create the position vector y1 and the velocity vector y2

x = 0 : pi/10 : 6 * pi;
y1 = sin(x);
y2 = cos(x);

The phase space portrait

plot(y1, y2)
xlabel('y_1'), ylabel('y_2')

2. 非线性时间序列预测.

基本方法:

局域预测法: 局部平均预测法, 局部线性预测法,局部多项式预测法.

全局预测法: 神经网络, 小波网络, 遗传算法.

from

A New Recurrence-Network-Based Time Series Analysis Approach for Characterizing System Dynamics - Guangyu Yang, Daolin Xu * and Haicheng Zhang的更多相关文章

  1. PP: Multilevel wavelet decomposition network for interpretable time series analysis

    Problem: the important frequency information is lack of effective modelling. ?? what is frequency in ...

  2. (转)LSTM NEURAL NETWORK FOR TIME SERIES PREDICTION

    LSTM NEURAL NETWORK FOR TIME SERIES PREDICTION Wed 21st Dec 2016   Neural Networks these days are th ...

  3. (zhuan) LSTM Neural Network for Time Series Prediction

    LSTM Neural Network for Time Series Prediction Wed 21st Dec 2016 Neural Networks these days are the ...

  4. 论文笔记:ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks

    ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks2018-03-05  11:13:05   ...

  5. DeepCoder: A Deep Neural Network Based Video Compression

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! Abstract: 在深度学习的最新进展的启发下,我们提出了一种基于卷积神经网络(CNN)的视频压缩框架DeepCoder.我们分别对预测 ...

  6. 论文笔记:(CVPR2019)Relation-Shape Convolutional Neural Network for Point Cloud Analysis

    目录 摘要 一.引言 二.相关工作 基于视图和体素的方法 点云上的深度学习 相关性学习 三.形状意识表示学习 3.1关系-形状卷积 建模 经典CNN的局限性 变换:从关系中学习 通道提升映射 3.2性 ...

  7. 论文翻译:2019_Deep Neural Network Based Regression Approach for A coustic Echo Cancellation

    论文地址:https://dl.acm.org/doi/abs/10.1145/3330393.3330399 基于深度神经网络的回声消除回归方法 摘要 声学回声消除器(AEC)的目的是消除近端传声器 ...

  8. 论文翻译:2020_Generative Adversarial Network based Acoustic Echo Cancellation

    论文地址:http://www.interspeech2020.org/uploadfile/pdf/Thu-1-10-5.pdf 基于GAN的回声消除 摘要 生成对抗网络(GANs)已成为语音增强( ...

  9. PP: A dual-stage attention-based recurrent neural network for time series prediction

    Problem: time series prediction The nonlinear autoregressive exogenous model: The Nonlinear autoregr ...

随机推荐

  1. ES6之常用开发知识点:入门(一)

    ES6介绍 ES6, 全称 ECMAScript 6.0 ,2015.06 发版. let 和 const命令 let命令 let 命令,用来声明变量.它的用法类似于var,区别在于var声明的变量全 ...

  2. [大数据技术]datax的安装以及使用

    1.datax简述 DataX 是阿里巴巴集团内被广泛使用的离线数据同步工具/平台,实现包括 MySQL.Oracle.SqlServer.Postgre.HDFS.Hive.ADS.HBase.Ta ...

  3. private、public、this关键字

    private关键字 概念:私有的,一种权限修饰符,用来修饰类的成员 特点:被修饰的成员只能在本类中访问 用法: - 1. private 数据类型 变量名: - 2. private 返回值类型 方 ...

  4. 使用FRP做内网穿透

    Github地址:https://github.com/fatedier/frp 什么是FRP? frp 是一个可用于内网穿透的高性能的反向代理应用,支持 tcp, udp 协议,为 http 和 h ...

  5. thinkphp5.0 insert添加数据

    首先引入文件:use think\Db; public function zhuce(){ $username = input("username");//手机号 $passwor ...

  6. STM32学习笔记 —— 0.1 Keil5安装和DAP仿真下载器配置的相关问题与注意事项

    Keil5安装的注意事项 安装细节在此不再做过多赘述,主要介绍一下注意事项: 安装路径中不能有中文. ARM的Keil的路径不能与51的Keil的有冲突,必须将目录分开. Keil5中不会自动添加芯片 ...

  7. nginx模块之ngx_http_upstream_module

    ngx_http_upstream_module 示例: http上下文: upstream upservers{ ip_hash; //根据客户端IP进行调度,每个客户端ip地址访问时每个ip生成一 ...

  8. PWA - service worker - Workbox(未完)

    Get Started(开始) 只有get请求才能cache缓存吗? Create and Register a Service Worker File(创建和注册 Service Worker) B ...

  9. 3.Docker Compose 部署 GitLab

    什么是 GitLab GitLab 是利用 Ruby on Rails 一个开源的版本管理系统,实现一个自托管的 Git 项目仓库,可通过 Web 界面进行访问公开的或者私人项目.它拥有与 Githu ...

  10. include=FALSE的作用

    每次都会加载很多的包,会显示很多没用的信息,特别是那个spdep. 例如: {r include=FALSE} library(plm) library(tseries) library(zoo) l ...