importing-cleaning-data-in-r-case-studies

导入数据

sales<-read_csv("sales.csv")

查看数据结构

> # View dimensions of sales
> dim(sales)
[1] 5000 46
>
> # Inspect first 6 rows of sales
> head(sales)
X event_id primary_act_id secondary_act_id
1 1 abcaf1adb99a935fc661 43f0436b905bfa7c2eec b85143bf51323b72e53c
2 2 6c56d7f08c95f2aa453c 1a3e9aecd0617706a794 f53529c5679ea6ca5a48
3 3 c7ab4524a121f9d687d2 4b677c3f5bec71eec8d1 b85143bf51323b72e53c
4 4 394cb493f893be9b9ed1 b1ccea01ad6ef8522796 b85143bf51323b72e53c
5 5 55b5f67e618557929f48 91c03a34b562436efa3c b85143bf51323b72e53c
6 6 4f10fd8b9f550352bd56 ac4b847b3fde66f2117e 63814f3d63317f1b56c4
purch_party_lkup_id
1 7dfa56dd7d5956b17587
2 4f9e6fc637eaf7b736c2
3 6c2545703bd527a7144d
4 527d6b1eaffc69ddd882
5 8bd62c394a35213bdf52
6 3b3a628f83135acd0676
event_name
1 Xfinity Center Mansfield Premier Parking: Florida Georgia Line
2 Gorge Camping - dave matthews band - sept 3-7
3 Dodge Theatre Adams Street Parking - benise
4 Gexa Energy Pavilion Vip Parking : kid rock with sheryl crow
5 Premier Parking - motley crue
6 Fast Lane Access: Journey
primary_act_name secondary_act_name major_cat_name
1 XFINITY Center Mansfield Premier Parking NULL MISC
2 Gorge Camping Dave Matthews Band MISC
3 Parking Event NULL MISC
4 Gexa Energy Pavilion VIP Parking NULL MISC
5 White River Amphitheatre Premier Parking NULL MISC
6 Fast Lane Access Journey MISC
minor_cat_name la_event_type_cat
1 PARKING PARKING
2 CAMPING INVALID
3 PARKING PARKING
4 PARKING PARKING
5 PARKING PARKING
6 SPECIAL ENTRY (UPSELL) UPSELL
event_disp_name
1 Xfinity Center Mansfield Premier Parking: Florida Georgia Line
2 Gorge Camping - dave matthews band - sept 3-7
3 Dodge Theatre Adams Street Parking - benise
4 Gexa Energy Pavilion Vip Parking : kid rock with sheryl crow
5 Premier Parking - motley crue
6 Fast Lane Access: Journey
ticket_text
1 THIS TICKET IS VALID FOR PARKING ONLY GOOD THIS DAY ONLY PREMIER PARKING PASS XFINITY CENTER,LOTS 4 PM SAT SEP 12 2015 7:30 PM
2 %OVERNIGHT C A M P I N G%* * * * * *%GORGE CAMPGROUND%* GOOD THIS DATE ONLY *%SEP 3 - 6, 2009
3 ADAMS STREET GARAGE%PARKING FOR 4/21/06 ONLY%DODGE THEATRE PARKING PASS%ENTRANCE ON ADAMS STREET%BENISE%GARAGE OPENS AT 6:00PM
4 THIS TICKET IS VALID FOR PARKING ONLY GOOD FOR THIS DATE ONLY VIP PARKING PASS GEXA ENERGY PAVILION FRI SEP 02 2011 7:00 PM
5 THIS TICKET IS VALID%FOR PARKING ONLY%GOOD THIS DATE ONLY%PREMIER PARKING PASS%WHITE RIVER AMPHITHEATRE%SAT JUL 30, 2005 6:00PM
6 FAST LANE JOURNEY FAST LANE EVENT THIS IS NOT A TICKET SAN MANUEL AMPHITHEATER SAT JUL 21 2012 7:00 PM
tickets_purchased_qty trans_face_val_amt delivery_type_cd event_date_time
1 1 45 eTicket 2015-09-12 23:30:00
2 1 75 TicketFast 2009-09-05 01:00:00
3 1 5 TicketFast 2006-04-22 01:30:00
4 1 20 Mail 2011-09-03 00:00:00
5 1 20 Mail 2005-07-31 01:00:00
6 2 10 TicketFast 2012-07-22 02:00:00
event_dt presale_dt onsale_dt sales_ord_create_dttm sales_ord_tran_dt
1 2015-09-12 NULL 2015-05-15 2015-09-11 18:17:45 2015-09-11
2 2009-09-04 NULL 2009-03-13 2009-07-06 00:00:00 2009-07-05
3 2006-04-21 NULL 2006-02-25 2006-04-05 00:00:00 2006-04-05
4 2011-09-02 NULL 2011-04-22 2011-07-01 17:38:50 2011-07-01
5 2005-07-30 2005-03-02 2005-03-04 2005-06-18 00:00:00 2005-06-18
6 2012-07-21 NULL 2012-04-11 2012-07-21 17:20:18 2012-07-21
print_dt timezn_nm venue_city venue_state venue_postal_cd_sgmt_1
1 2015-09-12 EST MANSFIELD MASSACHUSETTS 02048
2 2009-09-01 PST QUINCY WASHINGTON 98848
3 2006-04-05 MST PHOENIX ARIZONA 85003
4 2011-07-06 CST DALLAS TEXAS 75210
5 2005-06-28 PST AUBURN WASHINGTON 98092
6 2012-07-21 PST SAN BERNARDINO CALIFORNIA 92407
sales_platform_cd print_flg la_valid_tkt_event_flg fin_mkt_nm
1 www.concerts.livenation.com T N Boston
2 NULL T N Seattle
3 NULL T N Arizona
4 NULL T N Dallas
5 NULL T N Seattle
6 www.livenation.com T N Los Angeles
web_session_cookie_val gndr_cd age_yr income_amt edu_val edu_1st_indv_val
1 7dfa56dd7d5956b17587 <NA> <NA> <NA> <NA> <NA>
2 4f9e6fc637eaf7b736c2 <NA> <NA> <NA> <NA> <NA>
3 6c2545703bd527a7144d <NA> <NA> <NA> <NA> <NA>
4 527d6b1eaffc69ddd882 <NA> <NA> <NA> <NA> <NA>
5 8bd62c394a35213bdf52 <NA> <NA> <NA> <NA> <NA>
6 3b3a628f83135acd0676 <NA> <NA> <NA> <NA> <NA>
edu_2nd_indv_val adults_in_hh_num married_ind child_present_ind
1 <NA> <NA> <NA> <NA>
2 <NA> <NA> <NA> <NA>
3 <NA> <NA> <NA> <NA>
4 <NA> <NA> <NA> <NA>
5 <NA> <NA> <NA> <NA>
6 <NA> <NA> <NA> <NA>
home_owner_ind occpn_val occpn_1st_val occpn_2nd_val dist_to_ven
1 <NA> <NA> <NA> <NA> NA
2 <NA> <NA> <NA> <NA> 59
3 <NA> <NA> <NA> <NA> NA
4 <NA> <NA> <NA> <NA> NA
5 <NA> <NA> <NA> <NA> NA
6 <NA> <NA> <NA> <NA> NA
>
> # View column names of sales
> names(sales)
[1] "X" "event_id" "primary_act_id"
[4] "secondary_act_id" "purch_party_lkup_id" "event_name"
[7] "primary_act_name" "secondary_act_name" "major_cat_name"
[10] "minor_cat_name" "la_event_type_cat" "event_disp_name"
[13] "ticket_text" "tickets_purchased_qty" "trans_face_val_amt"
[16] "delivery_type_cd" "event_date_time" "event_dt"
[19] "presale_dt" "onsale_dt" "sales_ord_create_dttm"
[22] "sales_ord_tran_dt" "print_dt" "timezn_nm"
[25] "venue_city" "venue_state" "venue_postal_cd_sgmt_1"
[28] "sales_platform_cd" "print_flg" "la_valid_tkt_event_flg"
[31] "fin_mkt_nm" "web_session_cookie_val" "gndr_cd"
[34] "age_yr" "income_amt" "edu_val"
[37] "edu_1st_indv_val" "edu_2nd_indv_val" "adults_in_hh_num"
[40] "married_ind" "child_present_ind" "home_owner_ind"
[43] "occpn_val" "occpn_1st_val" "occpn_2nd_val"
[46] "dist_to_ven"

下面的一些都是查数据结构的

# Look at structure of sales

str(sales)
# View a summary of sales
summary(sales) # Load dplyr
require(dplyr) # Get a glimpse of sales
glimpse(sales)

删除指定列

# Remove the first column of sales: sales2
两种写法是一样的
sales2 <- sales[, 2:ncol(sales)]
sales2<-sales[,-1]

Create a vector called keep that contains the indices of the columns you want to save. Remember: you want to keep everything besides the first 4 and last 15 columns of sales2.

# Define a vector of column indices: keep
keep <- 5:(ncol(sales2) - 15) # Subset sales2 using keep: sales3
sales3 <- sales2[, keep]

separate 拆分单元格

可以参考separate帮助文档


# Load tidyr
require(tidyr) # Split event_date_time: sales4
sales4 <- separate(sales3, event_date_time,
c("event_dt","event_time"), sep = " ") # Split sales_ord_create_dttm: sales5
sales5<-separate(sales4,sales_ord_create_dttm,c("ord_create_dt" , "ord_create_time"),sep=" ") # Split month column into month and year: mbta6
mbta6 <- separate(mbta5, month, c("year", "month"))

读取指定位置的数据

# Define an issues vector
issues<-c(2516, 3863, 4082, 4183) # Print values of sales_ord_create_dttm at these indices
print(sales3$sales_ord_create_dttm[issues]) # Print a well-behaved value of sales_ord_create_dttm
print(sales3$sales_ord_create_dttm[2517])

stringr 包学习

参考stringr

str_detect()检查字符串匹配

# Load stringr
require(stringr)
# Find columns of sales5 containing "dt": date_cols
date_cols<-str_detect(names(sales5),"dt")
# Load lubridate
require(lubridate)
# Coerce date columns into Date objects
sales5[, date_cols] <- lapply(sales5[, date_cols] , ymd)

查看缺失值的个数

# Find date columns (don't change)
date_cols <- str_detect(names(sales5), "dt")
# Create logical vectors indicating missing values (don't change)
missing <- lapply(sales5[, date_cols], is.na)
# Create a numerical vector that counts missing values: num_missing
num_missing<-sapply(missing,sum)
# Print num_missing
num_missing

unite()

# Combine the venue_city and venue_state columns
sales6 <-unite(sales5,venue_city_state,venue_city , venue_state,sep=", ")
# View the head of sales6
head(sales6)

从excel中读入数据,并且跳过第一行

关键是skip这个参数

# Load readxl
library(readxl)
# Import mbta.xlsx and skip first row: mbta
mbta<-read_excel("mbta.xlsx",skip=1)

有一种很简单的删除行列的方式

# Remove rows 1, 7, and 11 of mbta: mbta2
mbta2<-mbta[c(-1,-7,-11),]
# Remove the first column of mbta2: mbta3
mbta3<-mbta2[,-1]

gather()合并单元格

# Load tidyr
require(tidyr) # Gather columns of mbta3: mbta4
mbta4<-gather(mbta3,month,thou_riders,-mode) # View the head of mbta4
head(mbta4)

fread()

# Import food.csv as a data frame: food
food <-fread("food.csv")

读取xls文件

# Load the gdata package
library(gdata) # Import the spreadsheet: att
att <- read.xls("attendance.xls")

Reference

importing-cleaning-data-in-r-case-studies的更多相关文章

  1. Cleaning Data in R

    目录 R 中清洗数据 常见三种查看数据的函数 Exploring raw data 使用dplyr包里面的glimpse函数查看数据结构 \(提取指定元素 ```{r} # Histogram of ...

  2. Importing data in R 1

    目录 Importing data in R 学习笔记1 flat files:CSV txt文件 packages:readr read_csv() read_tsv read_delim() da ...

  3. [C4W2] Convolutional Neural Networks - Deep convolutional models: case studies

    第二周 深度卷积网络:实例探究(Deep convolutional models: case studies) 为什么要进行实例探究?(Why look at case studies?) 这周我们 ...

  4. Data Visualization – Banking Case Study Example (Part 1-6)

    python信用评分卡(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_camp ...

  5. Case Studies: Retail and Investment Banks Use of Social Media

    The past couple of months have seen an increased acknowledgement of the role social media has to pla ...

  6. (转) 6 ways of mean-centering data in R

    6 ways of mean-centering data in R 怎么scale我们的数据? 还是要看我们自己数据的特征. 如何找到我们数据的中心? Cluster analysis with K ...

  7. 学习笔记(四): Representation:Feature Engineering/Qualities of Good Features/Cleaning Data/Feature Sets

    目录 Representation Feature Engineering Mapping Raw Data to Features Mapping numeric values Mapping ca ...

  8. LOAD DATA INFILE – performance case study

    转: http://venublog.com/2007/11/07/load-data-infile-performance/ I often noticed that people complain ...

  9. Analyzing Microarray Data with R

    1) 熟悉CEL file 从 NCBI GEO (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE24460)下载GSE24460. 将得到 ...

  10. R0—New packages for reading data into R — fast

    小伙伴儿们有福啦,2015年4月10日,Hadley Wickham大牛(开发了著名的ggplots包和plyr包等)和RStudio小组又出新作啦,新作品readr包和readxl包分别用于R读取t ...

随机推荐

  1. 折腾vue--环境搭建(一)

    1.安装nodejs nodejs下载地址:https://nodejs.org/en/ 2.检测nodejs //检测nodejs版本 node -v //检测npm npm –v 3.安装vue ...

  2. mysql基于二进制文件的主从复制

    1.设置主服务器配置         必须在主服务器上启用二进制日志,因为二进制日志是将更改从主服务器复制到从服务器的基础,如果未启用log-bin,则无法进行复制         复制组内的每个服务 ...

  3. 首次使用Lambda表达式-sunziren

    需要将List<Apple> list = new ArrayList<Apple>(); 按照Apple对象中的price属性从大到小排序. 第一个念头闪过的是冒泡排序,转念 ...

  4. 小白的java学习之路 “ 循环结构(二)”

    一.for 循环 语法: for(表达式一;表达式二;表达式三){ 循环操作 } 表达式一:参数初始化 表达式二:条件判断 表达式三:更新循环变量 执行流程: 步骤一:执行表达式一.初始化参数 步骤二 ...

  5. 【spring】(填坑)sql注入攻击 - 持久层参数化

    结果   填坑失败,并没有看懂是如何检测sql攻击的. 只能说的是: 建议都使用参数化传递sql语句参数.(所以,用hibernate.mybatis等框架的真不用太担心sql攻击问题.) 前言 本文 ...

  6. t-SNE and PCA

    1.t-SNE 知乎 t-分布领域嵌入算法 虽然主打非线性高维数据降维,但是很少用,因为 比较适合应用于可视化,测试模型的效果 保证在低维上数据的分布与原始特征空间分布的相似性高 因此用来查看分类器的 ...

  7. 高数(求x的n次方的导数)

  8. 安装DHCP到CentOS(YUM)

    运行环境 系统版本:CentOS Linux release 7.3.1611 (Core) 软件版本:DHCP-x 硬件要求:无 安装过程 1.安装YUM源,由EPEL提供 [root@localh ...

  9. Python GUI编程(TKinter)(简易计算器)

    搞课设搞得心累,现在看到人脸这两个字就烦躁,无聊搞搞tkinter,实现一个计算器的功能,能够简单的加减乘除. 简单的页面如下: 简单的代码如下: # encoding:utf-8 import tk ...

  10. PTA 1003 Emergency

    问题描述 As an emergency rescue team leader of a city, you are given a special map of your country. The ...