6.4 Image$$ execution region symbols

The linker generates Image$$ symbols for every execution region present in the image.

The following table shows the symbols that the linker generates for every execution region present in the image. All the symbols refer to execution addresses after the C library is initialized.

Table 6-1 Image$$ execution region symbols

Symbol Description
Image$$region_name$$Base Execution address of the region.
Image$$region_name$$Length Execution region length in bytes excluding ZI length.
Image$$region_name$$Limit Address of the byte beyond the end of the non-ZI part of the execution region.
Image$$region_name$$RO$$Base Execution address of the RO output section in this region.
Image$$region_name$$RO$$Length Length of the RO output section in bytes.
Image$$region_name$$RO$$Limit Address of the byte beyond the end of the RO output section in the execution region.
Image$$region_name$$RW$$Base Execution address of the RW output section in this region.
Image$$region_name$$RW$$Length Length of the RW output section in bytes.
Image$$region_name$$RW$$Limit Address of the byte beyond the end of the RW output section in the execution region.
Image$$region_name$$XO$$Base Execution address of the XO output section in this region.
Image$$region_name$$XO$$Length Length of the XO output section in bytes.
Image$$region_name$$XO$$Limit Address of the byte beyond the end of the XO output section in the execution region.
Image$$region_name$$ZI$$Base Execution address of the ZI output section in this region.
Image$$region_name$$ZI$$Length Length of the ZI output section in bytes.
Image$$region_name$$ZI$$Limit Address of the byte beyond the end of the ZI output section in the execution region.

6.5 Load$$ execution region symbols

The linker generates Load$$ symbols for every execution region present in the image.

Note

Load$$region_name symbols apply only to execution regions. Load$$LR$$load_region_name symbols apply only to load regions.
The following table shows the symbols that the linker generates for every Load$$ execution region present in the image. All the symbols refer to load addresses after the C library is initialized.

Table 6-2 Load$$ execution region symbols

Symbol Description
Load$$region_name$$Base Load address of the region.
Load$$region_name$$Length Region length in bytes.
Load$$region_name$$Limit Address of the byte beyond the end of the execution region.
Load$$region_name$$RO$$Base Address of the RO output section in this execution region.
Load$$region_name$$RO$$Length Length of the RO output section in bytes.
Load$$region_name$$RO$$Limit Address of the byte beyond the end of the RO output section in the execution region.
Load$$region_name$$RW$$Base Address of the RW output section in this execution region.
Load$$region_name$$RW$$Length Length of the RW output section in bytes.
Load$$region_name$$RW$$Limit Address of the byte beyond the end of the RW output section in the execution region.
Load$$region_name$$XO$$Base Address of the XO output section in this execution region.
Load$$region_name$$XO$$Length Length of the XO output section in bytes.
Load$$region_name$$XO$$Limit Address of the byte beyond the end of the XO output section in the execution region.
Load$$region_name$$ZI$$Base Load address of the ZI output section in this execution region.
Load$$region_name$$ZI$$Length
Load length of the ZI output section in bytes.
The Load Length of ZI is zero unless region_name has the ZEROPAD scatter-loading keyword set. If ZEROPAD is set then:
Load Length = Image$$region_name$$ZI$$Length
Load$$region_name$$ZI$$Limit Load address of the byte beyond the end of the ZI output section in the execution region.
All symbols in this table refer to load addresses before the C library is initialized. Be aware of the following:
  • The symbols are absolute because section-relative symbols can only have execution addresses.
  • The symbols take into account RW compression.
  • References to linker-defined symbols from RW compressed execution regions must be to symbols that are resolvable before RW compression is applied.
  • If the linker detects a relocation from an RW-compressed region to a linker-defined symbol that depends on RW compression, then the linker disables compression for that region.
  • Any Zero Initialized data that is written to the file is taken into account by the Limit and Length values. Zero Initialized data is written into the file when the ZEROPAD scatter-loading keyword is used.

6.6 Load$$LR$$ load region symbols

The linker generates Load$$LR$$ symbols for every load region present in the image.

A Load$$LR$$ load region can contain many execution regions, so there are no separate $$RO and $$RW components.

Note

Load$$LR$$load_region_name symbols apply only to load regions. Load$$region_name symbols apply only to execution regions.
The following table shows the symbols that the linker generates for every Load$$LR$$ load region present in the image.

Table 6-3 Load$$LR$$ load region symbols

Symbol Description
Load$$LR$$load_region_name$$Base Address of the load region.
Load$$LR$$load_region_name$$Length Length of the load region.
Load$$LR$$load_region_name$$Limit Address of the byte beyond the end of the load region.

6.7 Region name values when not scatter-loading

When scatter-loading is not used when linking, the linker uses default region name values.

If you are not using scatter-loading, the linker uses region name values of:
  • ER_XO, for an execute-only execution region, if present.
  • ER_RO, for the read-only execution region.
  • ER_RW, for the read-write execution region.
  • ER_ZI, for the zero-initialized execution region.
You can insert these names into the following symbols to obtain the required address:
  • Image$$ execution region symbols.
  • Load$$ execution region symbols.
For example, Load$$ER_RO$$Base.

Note

  • The ZI output sections of an image are not created statically, but are automatically created dynamically at runtime. Therefore, there is no load address symbol for ZI output sections.
  • It is recommended that you use region-related symbols in preference to section-related symbols.

6.9 Methods of importing linker-defined symbols in C and C++

You can import linker-defined symbols into your C or C++ source code either by value or by reference.

Import by value

extern unsigned int symbol_name;
Import by reference
extern void *symbol_name;
If you declare a symbol as an int, then you must use the address-of operator (&) to obtain the correct value as shown in these examples:
Importing a linker-defined symbol
extern unsigned int Image$$ZI$$Limit;
config.heap_base = (unsigned int) &Image$$ZI$$Limit;
Importing symbols that define a ZI output section
extern unsigned int Image$$ZI$$Length;
extern char Image$$ZI$$Base[];
memset(Image$$ZI$$Base,,(unsigned int)&Image$$Length);

6.11 Section-related symbols

Section-related symbols are symbols generated by the linker when it creates an image without scatter-loading.

The linker generates the following types of section-related symbols:
  • Image symbols, if you do not use scatter-loading to create a simple image. A simple image has up to four output sections (XO, RO, RW, and ZI) that produce the corresponding execution regions.
  • Input section symbols, for every input section present in the image.
The linker sorts sections within an execution region first by attribute RO, RW, or ZI, then by name. So, for example, all .text sections are placed in one contiguous block. A contiguous block of sections with the same attribute and name is known as a consolidated section.

6.21 Steering file command summary

A summary of the commands you can use in a streering file.

The steering file commands are:

Table 6-6 Steering file command summary

Command Description
EXPORT Specifies that a symbol can be accessed by other shared objects or executables.
HIDE Makes defined global symbols in the symbol table anonymous.
IMPORT Specifies that a symbol is defined in a shared object at runtime.
RENAME Renames defined and undefined global symbol names.
REQUIRE Creates a DT_NEEDED tag in the dynamic array. DT_NEEDED tags specify dependencies to other shared objects used by the application, for example, a shared library.
RESOLVE Matches specific undefined references to a defined global symbol.
SHOW Makes global symbols visible. This command is useful if you want to make a specific symbol visible that is hidden using a HIDE command with a wildcard.

Note

The steering file commands control only global symbols. Local symbols are not affected by any of these commands.
 
 
 
 

6 Accessing and Managing Symbols with armlink的更多相关文章

  1. Unity3D & C# 设计模式--23

     Unity3D & C#Design Patterns 23 design patterns. Creational Patterns 1. Abstract Factory抽象工厂 创 ...

  2. 【ASP.NET Identity系列教程(二)】运用ASP.NET Identity

    注:本文是[ASP.NET Identity系列教程]的第二篇.本系列教程详细.完整.深入地介绍了微软的ASP.NET Identity技术,描述了如何运用ASP.NET Identity实现应用程序 ...

  3. TN035: Using Multiple Resource Files and Header Files with Visual C++

    TN035: Using Multiple Resource Files and Header Files with Visual C++ This note describes how the Vi ...

  4. ASP.NET Identity 二 (转载)

    来源:http://www.cnblogs.com/r01cn/p/5180892.html#undefined 推荐看原文,这里转载是怕好文章消失了. 注:本文是[ASP.NET Identity系 ...

  5. PASCAL VOC数据集The PASCAL Object Recognition Database Collection

    The PASCAL Object Recognition Database Collection News 04-Apr-07: The VOC2007 challenge development ...

  6. SQLServer学习-- Microsoft SQL Server 2008 Management Studio Express

    Microsoft SQL Server 2008 Management Studio Express is a free, integrated environment for accessing, ...

  7. Design Pattern ->Composite

    Layering & Contract Philosophy With additional indirection class CComponent { ; ; ; public: virt ...

  8. ASP.NET Identity系列教程-3【运用ASP.NET Identity】

    https://www.cnblogs.com/r01cn/p/5180892.html 14 运用ASP.NET Identity In this chapter, I show you how t ...

  9. Managing a node remotely by using the netapp SP

    Managing a node remotely by using the Service Processor The Service Processor (SP) is a remote manag ...

随机推荐

  1. Confluence 6 站点备份和恢复

    Atlassian 推荐针对生产环境中安装使用的 Confluence 使用原始数据库工具备份策略. 在默认的情况下,Confluence 每天都会备份所有数据和附件到 XML 文件备份中.这些文件被 ...

  2. centos7安装kylo0.10.1

    安装环境centos7,kylo版本0.10.1 常用的链接地址 kylo官网:https://kylo.io/ kylo文档:https://kylo.readthedocs.io/ 下载地址 官网 ...

  3. robotium学习

    20140424 控件种类:spinner:下拉菜单,可以选择:TabHost:可以左右滑动,比如电话本:Gallery:rogressbar进度条;DatePicker;CheckBox,Radio ...

  4. targetSdkVersion和与target属性的区别

    参考:http://blog.csdn.net/dai_zhenliang/article/details/8175781 AndroidMenifest.xml中targetSdkVersion和p ...

  5. legend2---开发日志16

    legend2---开发日志16 一.总结 一句话总结: 编程敲代码,一定要把 关系弄清楚,关系不弄清楚,很容易敲错,比如:如何求无限级分类的博客的数据的数目 弄清楚关系式:自己总数量=孩子总数量+自 ...

  6. MySql精简

    安装的是免安装版MySql 由于MySql是开源的,故下载的时候源码也会包含,如果单纯只是使用其功能,则可以将这些文件删除为MySql减肥 可以删除的文件有如下: 1.mysql-test 文件夹: ...

  7. JAVA调用R脚本 windwos路径下

    RConnection c = new RConnection();// REXP x = c.eval("source('D:\\\\jiaoben\\\\RJava_test.R',en ...

  8. flink学习之十一-window&EventTime实例

    上面试了Processing Time,在这里准备看下Event Time,以及必须需要关注的,在ET场景下的Watermarks. EventTime & Watermark Event t ...

  9. VS2015 定时服务及控制端

    一.  服务端 如下图—新建项目—经典桌面—Windows服务—起名svrr 2. 打到server1 改名为svrExecSqlInsert 右击对应的设计界面,添加安装服务目录结构如图 3. sv ...

  10. java-day20

    注解:说明程序的,给计算机看的 注释:用文字描述程序的,给程序员看的 定义:注解(Annotation),也叫元数据.一种代码级别的说明.它是JDK1.5及以后版本引入的一个特性.与类.接口.枚举是在 ...