hdu4126_hdu4756_求最小生成树的最佳替换边_Kruskal and Prim
(有任何问题欢迎留言或私聊 && 欢迎交流讨论哦
Catalog
Problem:
原题目描述在最下面。
第一题:
给定一张n(3000)个点的图,q次询问,每次询问增大一条边的权值后最小生成树的值是多少,求答案期望。
第二题:
给定一张n(1000)个点的图,某两个点间的边可能不存在,问各种情况最小生成树的最大值。
Solution:
第一题用的\(kruskal\),第二题用的\(prim\)。貌似\(prim\)算法效率更高,毕竟都是稠密图。
先求MST,跑一边树形\(dp\),\(dp\)数组记录任意两个路径间不在MST上的最小边权值。
然后就枚举边求解咯。
\]
AC_Code:
hdu4126
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <vector>
#include <ctime>
#include <cmath>
#include <iostream>
#define lson(x) cw[x].l
#define rson(x) cw[x].r
using namespace std;
typedef long long LL;
typedef pair<int, int> pii;
const int MXN = 3e3 + 5;
const int MXE = 1e7 + 5;
const int INF = 0x3f3f3f3f;
int n, m, tot;
vector<int> son[MXN];
struct lp{
int u, v;
int w;
}edge[MXE];
int fa[MXN], rnk[MXN];
int dis1[MXN][MXN], is[MXN][MXN], ar[MXN][MXN];
void init() {
memset(dis1, 0x3f, sizeof(dis1));
memset(is, 0, sizeof(is));
memset(ar, 0x3f, sizeof(ar));
for(int i = 1; i <= n; ++i) {
fa[i] = i;
rnk[i] = 1;
son[i].clear();
ar[i][i] = dis1[i][i] = 0;
}
}
bool cmp(const lp &a, const lp &b) {
return a.w < b.w;
}
int Fi(int x) {
return fa[x] == x? x: fa[x] = Fi(fa[x]);
}
LL kruskal(int k) {
int CNT = 0;
LL ans = 0;
for(int i = 0; i < k; ++i) {
int x = Fi(edge[i].u), y = Fi(edge[i].v);
if(x == y) continue;
if(rnk[x] > rnk[y]) swap(x, y);
fa[x] = y;
rnk[y] += rnk[x];
++ CNT;
ans += edge[i].w;
son[edge[i].u].push_back(edge[i].v);
son[edge[i].v].push_back(edge[i].u);
is[edge[i].u][edge[i].v] = is[edge[i].v][edge[i].u] = 1;
if(CNT == n-1) break;
}
return ans;
}
int dfs(int u,int ba,int r) {
int len = son[u].size(), mi = INF;
for(int i = 0; i < len; ++i) {
int v = son[u][i];
if(v == ba) continue;
int tmp = dfs(v, u, r);
mi = min(mi, tmp);
dis1[u][v] = dis1[v][u] = min(dis1[v][u], tmp);
}
if(r != ba) mi = min(mi, ar[r][u]);
return mi;
}
void solve() {
init();
for(int i = 0; i < m; ++i) {
scanf("%d%d%d", &edge[i].u, &edge[i].v, &edge[i].w);
edge[i].u ++; edge[i].v ++;
ar[edge[i].u][edge[i].v] = ar[edge[i].v][edge[i].u] = edge[i].w;
}
sort(edge, edge + m, cmp);
int ans = kruskal(m), q;
for(int i = 1; i <= n; ++i) dfs(i, -1, i);
LL sum = 0, tmp;
scanf("%d", &q);
for(int i = 0, u, v, w; i < q; ++i) {
scanf("%d%d%d", &u, &v, &w);
u++; v++;
if(is[u][v]) {
tmp = ans - ar[u][v] + min(dis1[u][v], w);
}else {
tmp = ans;
}
sum += tmp;
}
printf("%.4f\n", sum*1.0/q);
}
int main(int argc, char const *argv[]){
while(~scanf("%d%d", &n, &m)&&(n + m)) solve();
return 0;
}
hdu4756
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <vector>
#include <ctime>
#include <cmath>
#include <iostream>
#define lson(x) cw[x].l
#define rson(x) cw[x].r
using namespace std;
typedef long long LL;
typedef pair<int, int> pii;
const int MXN = 1e3 + 5;
const int MXE = 1e7 + 5;
const int INF = 0x3f3f3f3f;
int n;
double m;
vector<int> son[MXN];
int is[MXN][MXN];
double ar[MXN][MXN], dis1[MXN][MXN], dis[MXN];
int pre[MXN], vis[MXN];
LL x[MXN], y[MXN];
void init() {
memset(is, 0, sizeof(is));
for(int i = 1; i <= n; ++i) {
for(int j = 1; j <= n; ++j) ar[i][j] = dis1[i][j] = INF;
son[i].clear();
ar[i][i] = dis1[i][i] = 0;
}
}
double prim() {
double sum = 0;
for(int i = 1; i <= n; ++i) {
dis[i] = ar[1][i];
vis[i] = 1;
pre[i] = 1;
}
vis[1] = -1;
for(int J = 1; J < n; ++J) {
int p = -1;
double mm = INF;
for(int i = 1; i <= n; ++i) {
if(vis[i] != -1 && dis[i] < mm) {
p = i; mm = dis[i];
}
}
if(p == -1) break;
sum += mm;
son[p].push_back(vis[p]);
son[vis[p]].push_back(p);
is[p][vis[p]] = is[vis[p]][p] = 1;
vis[p] = -1;
for(int i = 1; i <= n; ++i) {
if(ar[p][i] < dis[i] && vis[i] != -1) {
dis[i] = ar[p][i];
vis[i] = p;
}
}
}
return sum;
}
double dfs(int u,int ba,int r) {
int len = son[u].size();
double mi = INF;
for(int i = 0; i < len; ++i) {
int v = son[u][i];
if(v == ba) continue;
double tmp = dfs(v, u, r);
mi = min(mi, tmp);
dis1[u][v] = dis1[v][u] = min(dis1[v][u], tmp);
}
if(r != ba) mi = min(mi, ar[r][u]);
return mi;
}
LL two(LL x) {
return x * x;
}
void solve() {
scanf("%d%lf", &n, &m);
init();
for(int i = 1; i <= n; ++i) {
scanf("%lld%lld", &x[i], &y[i]);
}
for(int i = 1; i < n; ++i) {
for(int j = i + 1; j <= n; ++j) {
ar[i][j] = ar[j][i] = sqrt(two(x[i]-x[j])*1.0+two(y[i]-y[j]));
}
}
double tmp = prim(), ans = tmp;
//printf("MST = %.2f\n", tmp);
for(int i = 1; i <= n; ++i) dfs(i, -1, i);
for(int i = 2; i < n; ++i) {
for(int j = i + 1; j <= n; ++j) {
if(is[i][j])ans = max(tmp - ar[i][j] + dis1[i][j], ans);
}
}
if(ans >= INF) printf("%.2f\n", tmp * m);
else printf("%.2f\n", ans * m);
}
int main(int argc, char const *argv[]){
int tim;scanf("%d", &tim);
while(tim--) solve();
return 0;
}
Problem Description:
一:
Our story is about Jebei Noyan(哲别), who was one of the most famous generals in Genghis Khan’s cavalry. Once his led the advance troop to invade a country named Pushtuar. The knights rolled up all the cities in Pushtuar rapidly. As Jebei Noyan’s advance troop did not have enough soldiers, the conquest was temporary and vulnerable and he was waiting for the Genghis Khan’s reinforce. At the meantime, Jebei Noyan needed to set up many guarders on the road of the country in order to guarantee that his troop in each city can send and receive messages safely and promptly through those roads.
There were N cities in Pushtuar and there were bidirectional roads connecting cities. If Jebei set up guarders on a road, it was totally safe to deliver messages between the two cities connected by the road. However setting up guarders on different road took different cost based on the distance, road condition and the residual armed power nearby. Jebei had known the cost of setting up guarders on each road. He wanted to guarantee that each two cities can safely deliver messages either directly or indirectly and the total cost was minimal.
Things will always get a little bit harder. As a sophisticated general, Jebei predicted that there would be one uprising happening in the country sooner or later which might increase the cost (setting up guarders) on exactly ONE road. Nevertheless he did not know which road would be affected, but only got the information of some suspicious road cost changes. We assumed that the probability of each suspicious case was the same. Since that after the uprising happened, the plan of guarder setting should be rearranged to achieve the minimal cost, Jebei Noyan wanted to know the new expected minimal total cost immediately based on current information.
Input
There are no more than 20 test cases in the input.
For each test case, the first line contains two integers N and M (1<=N<=3000, 0<=M<=N×N), demonstrating the number of cities and roads in Pushtuar. Cities are numbered from 0 to N-1. In the each of the following M lines, there are three integers xi, yi and ci(ci<=107), showing that there is a bidirectional road between xi and yi, while the cost of setting up guarders on this road is ci. We guarantee that the graph is connected. The total cost of the graph is less or equal to 109.
The next line contains an integer Q (1<=Q<=10000) representing the number of suspicious road cost changes. In the following Q lines, each line contains three integers Xi, Yi and Ci showing that the cost of road (Xi, Yi) may change to Ci (Ci<=107). We guarantee that the road always exists and Ci is larger than the original cost (we guarantee that there is at most one road connecting two cities directly). Please note that the probability of each suspicious road cost change is the same.
Output
For each test case, output a real number demonstrating the expected minimal total cost. The result should be rounded to 4 digits after decimal point.
Sample Input
3 3
0 1 3
0 2 2
1 2 5
3
0 2 3
1 2 6
0 1 6
0 0
Sample Output
6.0000
Hint
The initial minimal cost is 5 by connecting city 0 to 1 and city 0 to 2. In the first suspicious case, the minimal total cost is increased to 6;
the second case remains 5; the third case is increased to 7. As the result, the expected cost is (5+6+7)/3 = 6.
二:
As we all know, Nanjing is one of the four hottest cities in China. Students in NJUST find it hard to fall asleep during hot summer every year. They will never, however, suffer from that hot this year, which makes them really excited. NJUST’s 60th birthday is approaching, in the meantime, 50 million is spent to install air conditioning among students dormitories. Due to NJUST’s long history, the old circuits are not capable to carry heavy load, so it is necessary to set new high-load wires. To reduce cost, every wire between two dormitory is considered a segment. Now, known about all the location of dormitories and a power plant, and the cost of high-load wire per meter, Tom200 wants to know in advance, under the premise of all dormitories being able to supply electricity, the minimum cost be spent on high-load wires. And this is the minimum strategy. But Tom200 is informed that there are so many wires between two specific dormitories that we cannot set a new high-load wire between these two, otherwise it may have potential risks. The problem is that Tom200 doesn’t know exactly which two dormitories until the setting process is started. So according to the minimum strategy described above, how much cost at most you'll spend?
Input
The first line of the input contains a single integer T(T ≤ 100), the number of test cases.
For each case, the first line contains two integers n(3 ≤ n ≤ 1000), k(1 ≤ k ≤ 100). n represents n-1 dormitories and one power plant, k represents the cost of high-load wire per meter. n lines followed contains two integers x, y(0 ≤ x, y ≤ 10000000), representing the location of dormitory or power plant. Assume no two locations are the same, and no three locations are on a straight line. The first one is always the location of the power plant.
Output
For each case, output the cost, correct to two decimal places.
Sample Input
2
4 2
0 0
1 1
2 0
3 1
4 3
0 0
1 1
1 0
0 1
Sample Output
9.66
9.00
hdu4126_hdu4756_求最小生成树的最佳替换边_Kruskal and Prim的更多相关文章
- 全连通图求最小生成树边权之积(邻接矩阵/prim/kruskal)
Description 大家都知道最小生成树一般求的是构成最小生成树的边的权值之和. 现在请求构成最小生成树的边的权值之积 S,最终结果请输出 (S % 100003). P.S. 点之间的边为无向边 ...
- Prim算法和Kruskal算法求最小生成树
Prim算法 连通分量是指图的一个子图,子图中任意两个顶点之间都是可达的.最小生成树是连通图的一个连通分量,且所有边的权值和最小. 最小生成树中,一个顶点最多与两个顶点邻接:若连通图有n个顶点,则最小 ...
- (poj)1679 The Unique MST 求最小生成树是否唯一 (求次小生成树与最小生成树是否一样)
Description Given a connected undirected graph, tell if its minimum spanning tree is unique. Definit ...
- HDU-1233 还是畅通工程 (prim 算法求最小生成树)
prim 算法求最小生成树 还是畅通工程 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Oth ...
- prime算法求最小生成树(畅通工程再续)
连着做了四道畅通工程的题,其实都是一个套路,转化为可以求最小生成树的形式求最小生成树即可 这道题需要注意: 1:因为满足路的长度在10到1000之间才能建路,所以不满足条件的路径长度可以初始化为无穷 ...
- Kruskal和Prim算法求最小生成树
Kruskal算法求最小生成树 测试数据: 5 6 0 1 5 0 2 3 1 2 4 2 4 2 2 3 1 1 4 1 输出: 2 3 1 1 4 1 2 4 2 0 2 3 思路:在保证不产生回 ...
- Kruskal求最小生成树
#include<bits/stdc++.h> using namespace std; ; ; const int inf = 0x3f3f3f3f; ; typedef long lo ...
- poj 2349 求最小生成树里面第m长的边
题目链接:https://vjudge.net/problem/POJ-2349 题意: 题目就是要我们找到一个最小的值D,把图里面所有大于D的边去掉之后剩余的连通分支的数量为S.这个就是找这个图里面 ...
- hdu 3405 删掉某点后 求最小生成树
给出N个点的坐标 边的权值为两点间的距离 删掉其中某点 求最小生成树的权值和 要求这权值最小 因为最多50个点 所以具体是删哪个点 用枚举假如有4个点 就要求4次最小生成树 分别是2 3 4 | 1 ...
随机推荐
- 【leetcode】955. Delete Columns to Make Sorted II
题目如下: We are given an array A of N lowercase letter strings, all of the same length. Now, we may cho ...
- (微服务架构)Security + Oauth2 + Jwt + Zuul解决微服务系统的安全问题
前言 之前零零散散的学习过一点鉴权这方面的玩意儿,但自我感觉净他妈整些没用的,看代码还是看不懂,这次我们再统一对其进行学习一下,希望自己掌握这个技能,也希望屏幕面前的你能有点收获 此次的学习周期可能有 ...
- NOIp2018集训test-10-19 (bike day5)
Bike老爷问了好几天到底要怎样简单的题目你们才能AK啊终于在他每天降难度直到要走了才出了一套我们能AK的题.虽然前几天的题换成llj肯定随便AK. 其实最近有点方虽然通常最后都写完了把该拿的分拿了该 ...
- 第十四届华中科技大学程序设计竞赛--J Various Tree
链接:https://www.nowcoder.com/acm/contest/106/J来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其他语言65536 ...
- ubuntu安装mysql 并对外暴露3306端口
安装 sudo apt-get install mysql-client mysql-server vi /etc/mysql/mysql.conf.d/mysqld.cnf bind 127注掉 m ...
- CSS:CSS Float(浮动)
ylbtech-CSS:CSS Float(浮动) 1.返回顶部 1. CSS Float(浮动) 什么是 CSS Float(浮动)? CSS 的 Float(浮动),会使元素向左或向右移动,其周围 ...
- Quartus II 使用 modelsim 仿真
转自:http://www.cnblogs.com/emouse/archive/2012/07/08/2581223.html Quartus 中调用modelsim的流程 1. 设定仿真工具 as ...
- html select美化模拟jquery插件select2.js
代码展示:http://www.51xuediannao.com/demo.php 代码说明: select2.js是一个html select美化模拟类jquery插件,但是select2.js又远 ...
- centOs7 java启动jar 并部署到nginx
简单启动命令 启动命令: nohup java –jar 项目名 & 注意1.加&表示一直后台运行,不加表示临时运行,关闭窗口项目即停止运行2.nohup:即项目在运行前新建一个noh ...
- scala 基础笔记
view bound:必须传入一个隐式转换函数 class [T <% Ordered [T]] content bound:必须传入一个隐式值 class [T : Ordering] !异步 ...