CodeForces 1166D Cute Sequences
题目链接:http://codeforces.com/problemset/problem/1166/D
题目大意
给定序列的第一个元素 a 和最后一个元素 b 还有一个限制 m,请构造一个序列,序列的第 i 项 xi 满足 $x_i = \sum_{i = 1}^{i - 1} + r_i,1 \leq r_i \leq m$。
分析
$$
\begin{align*}
&∵\ x_i = (\sum_{j = 1}^{j - 1} x_j) + r_i,1 \leq r_i \leq m,i \geq 2 \\
&∵\ \sum_{j = 1}^{j - 1} x_j = 2 * x_{i - 1} - r_{i - 1} \\
&∴\ x_i = 2 * x_{i - 1} + r_i - r_{i - 1} \\
&∵\ x_2 = a + r_2 \\
&∴\ x_i = 2^{i - 2} * a + 2^{i - 3} * r_2 + 2^{i - 4} * r_3 + \dots + 2 * r_{i - 2} + r_{i - 1} + r_i \\
&∴\ x_i = 2^{i - 2} * a + r_i + (\sum_{j = 0}^{i - 3} 2^j * r_{i - j - 1}) \\
\ &设 h = r_k,d_i = r_k - h,1 - m \leq d_i \leq m - 1,1 \leq h \leq m \\
&∴\ x_i = 2^{i - 2} * a + h + (\sum_{j = 0}^{i - 3} 2^j * (d_{i - j - 1} + h)) \\
&∴\ x_i = 2^{i - 2} * (a + h) + (\sum_{j = 0}^{i - 3} 2^j * d_{i - j - 1}) \\
\ &令 d_{i - j - 1} = 0\ or \ 1,0 \leq j \leq i - 3 \\
\ &于是有(\sum_{j = 0}^{i - 3} 2^j * d_{i - j - 1}) < 2^{i - 2} \\
&∴\ x_i = 2^{i - 2} * (a + h) + (\sum_{j = 0}^{i - 3} 2^j * d_{i - j - 1}) 满足 2^{i - 2} * (a + 1) \leq x_i \leq 2^{i - 2} * (a + m), i \geq 2
\end{align*}
$$
至此我们找到了 $r_i$ 的一种赋值方案,使得 $2^{i - 2} * (a + 1) \leq x_i \leq 2^{i - 2} * (a + m), i \geq 2$。
应用到通项公式后我们发现: $x_{i - 1} = \frac{x_i + r_{i - 1} - r_i}{2} = \frac{x_i + p_i}{2},p_i \in \{-1, 0, 1\}$。
pi 的值视 xi 而定,且满足$2 \ | \ (x_i + p_i)$。
那么序列 p 中把 0 除外后的序列必然是 -1,1,-1交错的,可以用反证法证明。
如果 pi == pi+1 == 1,那么 ri-1 - ri+1 == 2,与 |rj - ri| == |dj - di| <= 1 矛盾。
据此可以从尾部开始向前构造序列。
代码如下
- #include <bits/stdc++.h>
- using namespace std;
- #define INIT() ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
- #define Rep(i,n) for (int i = 0; i < (n); ++i)
- #define For(i,s,t) for (int i = (s); i <= (t); ++i)
- #define rFor(i,t,s) for (int i = (t); i >= (s); --i)
- #define ForLL(i, s, t) for (LL i = LL(s); i <= LL(t); ++i)
- #define rForLL(i, t, s) for (LL i = LL(t); i >= LL(s); --i)
- #define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i)
- #define rforeach(i,c) for (__typeof(c.rbegin()) i = c.rbegin(); i != c.rend(); ++i)
- #define pr(x) cout << #x << " = " << x << " "
- #define prln(x) cout << #x << " = " << x << endl
- #define LOWBIT(x) ((x)&(-x))
- #define ALL(x) x.begin(),x.end()
- #define INS(x) inserter(x,x.begin())
- #define ms0(a) memset(a,0,sizeof(a))
- #define msI(a) memset(a,inf,sizeof(a))
- #define msM(a) memset(a,-1,sizeof(a))
- #define MP make_pair
- #define PB push_back
- #define ft first
- #define sd second
- template<typename T1, typename T2>
- istream &operator>>(istream &in, pair<T1, T2> &p) {
- in >> p.first >> p.second;
- return in;
- }
- template<typename T>
- istream &operator>>(istream &in, vector<T> &v) {
- for (auto &x: v)
- in >> x;
- return in;
- }
- template<typename T1, typename T2>
- ostream &operator<<(ostream &out, const std::pair<T1, T2> &p) {
- out << "[" << p.first << ", " << p.second << "]" << "\n";
- return out;
- }
- inline int gc(){
- static const int BUF = 1e7;
- static char buf[BUF], *bg = buf + BUF, *ed = bg;
- if(bg == ed) fread(bg = buf, , BUF, stdin);
- return *bg++;
- }
- inline int ri(){
- int x = , f = , c = gc();
- for(; c<||c>; f = c=='-'?-:f, c=gc());
- for(; c>&&c<; x = x* + c - , c=gc());
- return x*f;
- }
- typedef long long LL;
- typedef unsigned long long uLL;
- typedef pair< double, double > PDD;
- typedef pair< int, int > PII;
- typedef pair< string, int > PSI;
- typedef set< int > SI;
- typedef vector< int > VI;
- typedef map< int, int > MII;
- typedef pair< LL, LL > PLL;
- typedef vector< LL > VL;
- typedef vector< VL > VVL;
- const double EPS = 1e-;
- const LL inf = 0x7fffffff;
- const LL infLL = 0x7fffffffffffffffLL;
- const LL mod = 1e18 + ;
- const int maxN = 2e5 + ;
- const LL ONE = ;
- const LL evenBits = 0xaaaaaaaaaaaaaaaa;
- const LL oddBits = 0x5555555555555555;
- int q;
- LL a, b, m, k;
- LL x[];
- int main(){
- INIT();
- cin >> q;
- while(q--) {
- cin >> a >> b >> m;
- LL p = ;
- k = ;
- // 找使得 b <= p * (a + m) 的最小 p
- while(b > p * (a + m)) {
- ++k;
- p <<= ;
- }
- // 在 a != b 的情况下,只要满足 p * (a + 1) <= b <= p * (a + m),就一定可以构造
- if(b >= p * (a + )) {
- cout << k << " ";
- x[] = a;
- x[k] = b;
- int p = ;
- rFor(i, k - , ) {
- if(x[i + ] % == ) x[i] = x[i + ] >> ;
- else {
- x[i] = (x[i + ] + p) >> ;
- p = -p;
- }
- }
- For(i, , k) cout << x[i] << " " << endl;
- cout << endl;
- }
- else if(a == b) cout << "1 " << a << endl;
- else cout << - << endl;
- }
- return ;
- }
大佬代码如下
和我的代码效果是一样的,但我死活推不出原理,只能先搁着里了。
- #include <bits/stdc++.h>
- using namespace std;
- #define INIT() ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
- #define Rep(i,n) for (int i = 0; i < (n); ++i)
- #define For(i,s,t) for (int i = (s); i <= (t); ++i)
- #define rFor(i,t,s) for (int i = (t); i >= (s); --i)
- #define ForLL(i, s, t) for (LL i = LL(s); i <= LL(t); ++i)
- #define rForLL(i, t, s) for (LL i = LL(t); i >= LL(s); --i)
- #define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i)
- #define rforeach(i,c) for (__typeof(c.rbegin()) i = c.rbegin(); i != c.rend(); ++i)
- #define pr(x) cout << #x << " = " << x << " "
- #define prln(x) cout << #x << " = " << x << endl
- #define LOWBIT(x) ((x)&(-x))
- #define ALL(x) x.begin(),x.end()
- #define INS(x) inserter(x,x.begin())
- #define ms0(a) memset(a,0,sizeof(a))
- #define msI(a) memset(a,inf,sizeof(a))
- #define msM(a) memset(a,-1,sizeof(a))
- #define MP make_pair
- #define PB push_back
- #define ft first
- #define sd second
- template<typename T1, typename T2>
- istream &operator>>(istream &in, pair<T1, T2> &p) {
- in >> p.first >> p.second;
- return in;
- }
- template<typename T>
- istream &operator>>(istream &in, vector<T> &v) {
- for (auto &x: v)
- in >> x;
- return in;
- }
- template<typename T1, typename T2>
- ostream &operator<<(ostream &out, const std::pair<T1, T2> &p) {
- out << "[" << p.first << ", " << p.second << "]" << "\n";
- return out;
- }
- inline int gc(){
- static const int BUF = 1e7;
- static char buf[BUF], *bg = buf + BUF, *ed = bg;
- if(bg == ed) fread(bg = buf, , BUF, stdin);
- return *bg++;
- }
- inline int ri(){
- int x = , f = , c = gc();
- for(; c<||c>; f = c=='-'?-:f, c=gc());
- for(; c>&&c<; x = x* + c - , c=gc());
- return x*f;
- }
- typedef long long LL;
- typedef unsigned long long uLL;
- typedef pair< double, double > PDD;
- typedef pair< int, int > PII;
- typedef pair< string, int > PSI;
- typedef set< int > SI;
- typedef vector< int > VI;
- typedef map< int, int > MII;
- typedef pair< LL, LL > PLL;
- typedef vector< LL > VL;
- typedef vector< VL > VVL;
- const double EPS = 1e-;
- const LL inf = 0x7fffffff;
- const LL infLL = 0x7fffffffffffffffLL;
- const LL mod = 1e18 + ;
- const int maxN = 2e5 + ;
- const LL ONE = ;
- const LL evenBits = 0xaaaaaaaaaaaaaaaa;
- const LL oddBits = 0x5555555555555555;
- int q;
- LL a, b, m, k;
- int main(){
- INIT();
- cin >> q;
- while(q--) {
- cin >> a >> b >> m;
- LL p = ;
- k = ;
- // 找使得 b <= p * (a + m) 的最小 p
- while(b > p * (a + m)) {
- ++k;
- p <<= ;
- }
- // 在 a != b 的情况下,只要满足 p * (a + 1) <= b <= p * (a + m),就一定可以构造
- if(b >= p * (a + )) {
- cout << k << " " << a << " ";
- For(i, , k - ) cout << (((b >> (k - i - )) + ) >> ) << " ";
- cout << b << endl;
- }
- else if(a == b) cout << "1 " << a << endl;
- else cout << - << endl;
- }
- return ;
- }
CodeForces 1166D Cute Sequences的更多相关文章
- CodeForces 373B Making Sequences is Fun
Making Sequences is Fun Time Limit:2000MS Memory Limit:262144KB 64bit IO Format:%I64d & ...
- codeforces B. Making Sequences is Fun 解题报告
题目链接:http://codeforces.com/problemset/problem/373/B 题目意思:给出w,m和k,需要找出从m开始,可以有多少个连续的数(m+1,m+2,...)(在添 ...
- Codeforces 900D Unusual Sequences 容斥原理
题目链接:900D Unusual Sequences 题意: 给出两个数N,M.让你求数列(和为M,gcd为N)的个数. 题解: 首先,比较容易发现的是M%N如果不为零,那么一定不能构成这样的序列 ...
- CodeForces 900D Unusual Sequences
题目链接: https://codeforces.com/contest/900/problem/D 题意 假设有distinct 正整数序列{a1,a2,,,an},满足gcd(a1, a2, .. ...
- Codeforces 264B Good Sequences(DP+素数筛)
题目链接:http://codeforces.com/problemset/problem/264/B 题目大意:给出n个单调递增的数,让你找出最长的好序列,好序列是一种单调递增的并且相邻元素的最大公 ...
- Codeforces 900D Unusual Sequences:记忆化搜索
题目链接:http://codeforces.com/problemset/problem/900/D 题意: 给定x,y,问你有多少个数列a满足gcd(a[i]) = x 且 ∑(a[i]) = y ...
- Codeforces Jzzhu and Sequences(圆形截面)
# include <stdio.h> int f[10]; int main() { int x,y,n,j; while(~scanf("%d%d%d",& ...
- Codeforces Round #561 (Div. 2)
C. A Tale of Two Lands 题意: 给出 n 个数,问有多少点对(x,y)满足 |x-y| ≤ |x|,|y| ≤ |x+y|: (x,y) 和 (y,x) 表示一种答案: 题解: ...
- Codeforces Round #167 (Div. 2) D. Dima and Two Sequences 排列组合
题目链接: http://codeforces.com/problemset/problem/272/D D. Dima and Two Sequences time limit per test2 ...
随机推荐
- hive建模方法
转自:https://www.jianshu.com/p/8378b80e4b21 概述数据仓库这个概念是由 Bill Inmon 所提出的,其功能是将组织通过联机事务处理(OLTP)所积累的大量的资 ...
- mac os 下安装mysql
在 http://dev.mysql.com/downloads/mysql/ 选择下载mysql 注册并选择相应的版本后,得到下载链接:: wget http://dev.mysql.com/get ...
- win7 cmd 常用命令
进入不同的分区 d: 查看之栏目树:tree 查看当前目录下的子目录:dir 切换不同的目录:cd
- [nRF51822 AK II 教程]第一课,开发环境的配置及背景介绍【转】
低功耗蓝牙4.0是全新的技术,并不向下兼容,也就是说它和蓝牙3.0.2.0什么的都不能通信的.另外,蓝牙4.0目前的规范只能做外设和主机(智能手机,电脑等)通讯,也就是说你想用一个单模的蓝牙4.0开发 ...
- CSS:CSS margin(外边距)
ylbtech-CSS:CSS margin(外边距) 1.返回顶部 1. CSS margin(外边距) CSS margin(外边距)属性定义元素周围的空间. margin margin 清除周围 ...
- 拾遗:Go 基础
这 Go,越看越像是 C 和 Python 的混合体--! gofmt 用于格式化代码,缩进使用 tab,而不是空格:Python 官方则建议使用空格,而不是 tab package Go 惯例,使用 ...
- 运维生涯中总有一次痛彻心扉的rm命令
为了防止误操作,配置rm命令别名,同时可以进行恢复删除文件 1. 在/tmp目录下新建两个目录,命名为:.trash,tools cd /tmp/ mkdir .trash mkdir tools 2 ...
- java-day23
事务的四大特征: 1.原子性:是不可分割的最小操作单位,要么同时成功,要么同时失败. 2.持久性:当事务提交或回滚后,数据库会持久化的保存数据. 3.隔离性:多个事务之间,相互独立. 4.一致性:事务 ...
- 轻量级的惰性控件——ViewStub
在开发过程中,有时候,需要这样一种控件,正常情况下不可见,不占用任何布局空间,只在某种特定情况下显示,这种情况下,我们使用一个普通的View,利用设置setVisibility(View.GONE)自 ...
- Django-ORM初识
Django之ORM基础 一.ORM简介: ORM概念: 对象关系映射(Object Relational Mapping,简称ORM)模式是一种为了解决面向对象与关系数据库存在的互不匹配的现象的技术 ...