嘴巴题4 「BZOJ1827」[Usaco2010 Mar] gather 奶牛大集会
1827: [Usaco2010 Mar]gather 奶牛大集会
Description
Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会。当然,她会选择最方便的地点来举办这次集会。每个奶牛居住在 N(1<=N<=100,000) 个农场中的一个,这些农场由N-1条道路连接,并且从任意一个农场都能够到达另外一个农场。道路i连接农场A_i和B_i(1 <= A_i <=N; 1 <= B_i <= N),长度为L_i(1 <= L_i <= 1,000)。集会可以在N个农场中的任意一个举行。另外,每个牛棚中居住者C_i(0 <= C_i <= 1,000)只奶牛。在选择集会的地点的时候,Bessie希望最大化方便的程度(也就是最小化不方便程度)。比如选择第X个农场作为集会地点,它的不方便程度是其它牛棚中每只奶牛去参加集会所走的路程之和,(比如,农场i到达农场X的距离是20,那么总路程就是C_i*20)。帮助Bessie找出最方便的地点来举行大集会。 考虑一个由五个农场组成的国家,分别由长度各异的道路连接起来。在所有农场中,3号和4号没有奶牛居住。
Input
第一行:一个整数N * 第二到N+1行:第i+1行有一个整数C_i * 第N+2行到2*N行,第i+N+1行为3个整数:A_i,B_i和L_i。
Output
第一行:一个值,表示最小的不方便值。
Sample Input
5
1
1
0
0
2
1 3 1
2 3 2
3 4 3
4 5 3
Sample Output
15
题解
考虑在点\(x\)处的答案为\(ans\),总奶牛数为\(tot\),i为根子树总奶牛数为\(size_i\),对于\(x\)的一个儿子\(y\)的答案为\(ans^{'}\),\(y\)到\(x\)边权为\(w\)
有
\[ans^{'} = ans - size_i \times w + (tot - size_i) * w\]
化简得
\[ans^{'} = ans + (tot - 2 \times size_i) * w\]
即\(tot - 2 \times size_i < 0\)时t比x优
从根跑下来找到最优点然后以它为起点\(dfs\)/\(bfs\)一遍就行了。。
嘴巴题4 「BZOJ1827」[Usaco2010 Mar] gather 奶牛大集会的更多相关文章
- 【BZOJ1827】[Usaco2010 Mar]gather 奶牛大集会 树形DP
[BZOJ][Usaco2010 Mar]gather 奶牛大集会 Description Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会.当然,她会选择最方便的地点来 ...
- [Usaco2010 Mar]gather 奶牛大集会
[Usaco2010 Mar]gather 奶牛大集会 题目 Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会.当然,她会选择最方便的地点来举办这次集会.每个奶牛居住在 ...
- BZOJ 1827: [Usaco2010 Mar]gather 奶牛大集会 树形DP
[Usaco2010 Mar]gather 奶牛大集会 Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会.当然,她会选择最方便的地点来举办这次集会.每个奶牛居住在 N(1 ...
- 【树形DP/搜索】BZOJ 1827: [Usaco2010 Mar]gather 奶牛大集会
1827: [Usaco2010 Mar]gather 奶牛大集会 Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 793 Solved: 354[Sub ...
- BZOJ 1827: [Usaco2010 Mar]gather 奶牛大集会( dp + dfs )
选取任意一个点为root , size[ x ] 表示以 x 为根的子树的奶牛数 , dp一次计算出size[ ] && 选 root 为集会地点的不方便程度 . 考虑集会地点由 x ...
- BZOJ_1827_[Usaco2010 Mar]gather 奶牛大集会_树形DP
BZOJ_1827_[Usaco2010 Mar]gather 奶牛大集会_树形DP 题意:Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会.当然,她会选择最方便的地点来 ...
- bzoj1827 [Usaco2010 Mar]gather 奶牛大集会
不就是移一下树根,回溯一下吗? 诶?黄学长为什么可以直接找? 诶?这不是重心吗? YY了一下证明 很简单 由于重心max{sz[v]} <= sz[u] / 2的性质,可以证明每一步远离重心的移 ...
- BZOJ 1827: [Usaco2010 Mar]gather 奶牛大集会
Description Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会.当然,她会选择最方便的地点来举办这次集会.每个奶牛居住在 N(1<=N<=100,0 ...
- BZOJ 1827 [Usaco2010 Mar]gather 奶牛大集会(树形DP)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1827 [题目大意] 给出一棵有点权和边权的树, 请确定一个点,使得每个点到这个点的距离 ...
随机推荐
- 关于如何正确打开.wlf文件
只简单说明一下保存/打开.wlf需要注意的内容. (1) 保存 在GUI界面保存时,先切换到sim窗口: 用命令行保存时,其格式为: vsim –wlf <wave_file> … (2) ...
- Redis 常用的数据结构
String 字符串 set get 使用场景: 可以用来作为缓存使用(缓存更新策略和缓存雪崩如何处理) List lpop rpop lpush rpush 使用场景: set 无序集合 使用场景: ...
- 挂载U盘
.fdisk -l 查看当前系统存储盘 (sdaX一般是系统自带, sdbX则是外接) .mount /dev/sdbX /mnt/usb/ (如果usb目录不存在可创建新目录) .umount /m ...
- 计算几何——线段和直线判交点poj3304
#include<iostream> #include<cstring> #include<cstdio> #include<algorithm> #i ...
- 使用pdf文本域模板生成对应的pdf
第一步: 下载jar包 <!-- itext的pdf的依赖--> <dependency> <groupId>com.itextpdf</groupId> ...
- mysql中geometry类型的简单使用
mysql中geometry类型的简单使用 编写本文的目的: 让和两天前的我一样的初学者,能够更快的使用geometry类型存储空间点数据 也是为了自己加深印象,更熟练的使用geometry类型 ...
- day 66 Django基础之jQuery操作cookie
Django基础之jQuery操作cookie jquery之cookie操作 定义:让网站服务器把少量数据储存到客户端的硬盘或内存,从客户端的硬盘读取数据的一种技术: 下载与引入:jquery. ...
- PAT甲级——A1129 Recommendation System【25】
Recommendation system predicts the preference that a user would give to an item. Now you are asked t ...
- vue中的data用return返回
为什么在大型项目中data需要使用return返回数据呢? 答:不使用return包裹的数据会在项目的全局可见,会造成变量污染:使用return包裹后数据中变量只在当前组件中生效,不会影响其他组件. ...
- 19.SimLogin_case02
# 模拟登录马蜂窝 import requests from lxml import etree session = requests.Session() phone_number = input(' ...