一、休眠概述

休眠,简而言之就是设备在不需要工作的时候把一些部件、外设关掉(掉电或让它进入低功耗模式)。

为什么要休眠呢?一言以蔽之:省电。

休眠分主动休眠和被动休眠。主动休眠:比如我电脑不用了,就通过设置让系统进入休眠模式;被动休眠:系统检测到自己闲的慌,为了节约故,自己就休眠去了。

废话不叙。

二、Android休眠

休眠是内核的核心工作,而Android是基于Linux内核的,所以Android休眠和内核有着千丝万缕的联系;由于Android的特殊应用场景:移动设备,所以Android休眠和内核又有着特别的需求。

1、联系:

Android设备停止使用,系统没有什么事情可做,进入休眠状态的功能最终是由内核去实现的;每一类硬件都有自己的驱动,具体的驱动决定怎么进入休眠以及处于何种层次的休眠。比如:对于platform_device,就按照platform_driver定义的规则,在suspend调用的时候,去做上面提到的事情:

struct platform_driver {
int (*probe)(struct platform_device *);
int (*remove)(struct platform_device *);
void (*shutdown)(struct platform_device *);
int (*suspend)(struct platform_device *, pm_message_t state);
int (*resume)(struct platform_device *);
struct device_driver driver;
const struct platform_device_id *id_table;
};

2、Android的特别需求:

比如对于自己的电脑,不用让它休眠好了;但是对于我们形影不离的手机,在休眠的时候还要睁一只眼:来电了要通知你,QQ啊微信啊什么的由信息了也要通知你,所以Android在Linux内核休眠机制之上,提出了“Opportunistic Suspend”。

三、休眠实践

絮絮叨叨这么多,下面让我们切切实实体验下休眠。

1、休眠模式

休眠是分好几种模式的,不同模式实现方式、耗电量不同,以下来自Documentation/power/states.txt

The kernel supports four power management states generically, though
one is generic and the other three are dependent on platform support
code to implement the low-level details for each state.
This file describes each state, what they are
commonly called, what ACPI state they map to, and what string to write
to /sys/power/state to enter that state state: Freeze / Low-Power Idle
ACPI state: S0
String: "freeze" This state is a generic, pure software, light-weight, low-power state.
It allows more energy to be saved relative to idle by freezing user
space and putting all I/O devices into low-power states (possibly
lower-power than available at run time), such that the processors can
spend more time in their idle states.
This state can be used for platforms without Standby/Suspend-to-RAM
support, or it can be used in addition to Suspend-to-RAM (memory sleep)
to provide reduced resume latency. State: Standby / Power-On Suspend
ACPI State: S1
String: "standby" This state offers minimal, though real, power savings, while providing
a very low-latency transition back to a working system. No operating
state is lost (the CPU retains power), so the system easily starts up
again where it left off. We try to put devices in a low-power state equivalent to D1, which
also offers low power savings, but low resume latency. Not all devices
support D1, and those that don't are left on. State: Suspend-to-RAM
ACPI State: S3
String: "mem" This state offers significant power savings as everything in the
system is put into a low-power state, except for memory, which is
placed in self-refresh mode to retain its contents. System and device state is saved and kept in memory. All devices are
suspended and put into D3. In many cases, all peripheral buses lose
power when entering STR, so devices must be able to handle the
transition back to the On state. For at least ACPI, STR requires some minimal boot-strapping code to
resume the system from STR. This may be true on other platforms. State: Suspend-to-disk
ACPI State: S4
String: "disk" This state offers the greatest power savings, and can be used even in
the absence of low-level platform support for power management. This
state operates similarly to Suspend-to-RAM, but includes a final step
of writing memory contents to disk. On resume, this is read and memory
is restored to its pre-suspend state.

虽说kernel支持上述四种休眠模式,但具体哪几种可用取决于你的硬件。那么怎么知道自己的Android设备支持的休眠模式呢?

答案:通过/sys/文件系统。查询支持的休眠模式可以cat文件/sys/power/state:

cat /sys/power/state
freeze mem

如果我们往/sys/power/state文件echo上面的某一种模式的字符串,系统就会进入相应的休眠模式:

echo "mem" > /sys/power/state

如果你搜索过Android休眠相关的内容,在老版本的Android(4.4版本之前)会见有提到PowerManager的setPowerState()方法,该方法即是通过以上方式使系统进入休眠。但自从引入Autosleep后,就不在这么做了,setPowerState()方法也销声匿迹。

2、/sys/power/目录下文件

文件简介:

  • /sys/power/state:用来控制系统的Power状态。读取该文件可以获取系统支持的休眠模式,写入该文件休眠模式的一种,系统进入到指定的休眠模式。如上所示例。
  • /sys/power/autosleep:从Android wakelocks补丁集中演化而来,用于取代Android wakelocks中的自动休眠功能。向该文件写入/sys/power/state返回值的某一种,系统会在适当的时候进入指定的休眠的模式;读取该文件返回之前写入的数值。
  • /sys/power/wake_lock、/sys/power/wake_unlock:即我们常说的休眠锁,如果应用持有休眠锁,系统将无法进入休眠模式。在Android wakelocks时代,写wake_lock获取锁,写wake_unlock释放锁;在AutoSleep时代,具体参见【Android休眠】之AutoSleep
  • wakeup_count:用于解决“system suspend和system wakeup events之间的同步问题”。
  • /sys/power/pm_async:状态切换开关,允许/禁止User空间对设备进行异步的suspend和resume操作。
  • /sys/power/pm_freeze_timeout:系统在执行休眠动作的时候要冻结(freeze)用户控件的进程和内核空间的允许冻结的内核线程,执行这些操作要耗时间吧?该文件指定所需时间的最大值。

四、其他需要明了的问题

1、Android设备屏幕暗下来的时候,并不是立即就进入了休眠模式;当所有唤醒源都处于de-avtive状态后,系统才会进入休眠。

2、Android设备连着adb线到其他设备的情况下,设备是不会进入休眠模式的。

3、有休眠操作就有唤醒,就需要唤醒源。唤醒源有很多种,在内核注册,比如常用的Power按键。

4、曾经困惑的一个问题:系统怎么知道自己应该进入休眠模式了?它的判断依据是什么?

在wakelock时代,系统休眠过程中去检测休眠锁;如果系统中没有其他部件持有休眠锁,就尝试进入休眠模式,没有异常事件发生的话就进入休眠模式。

Android从4.4开始使用autosleep机制,只要不存在任何active的唤醒源(wakeup_source)了,就进入休眠模式。

5、系统Power Manager整体流程:

【Android休眠】之Android休眠机制的更多相关文章

  1. Android线程与异步消息处理机制

    在程序开发时,对于一些比较耗时的操作,我们通常会为其开辟一个单独的线程来执行,这样可以尽可能的减少用户等待的时间.在Android中,默认情况下,所有的操作都是在主线程中进行的,这个主线程负责管理与U ...

  2. Android学习之异步消息处理机制

    •前言 我们在开发 APP 的过程中,经常需要更新 UI: 但是 Android 的 UI 线程是不安全的: 如果想更新 UI 线程,必须在进程的主线程中: 这里我们引用了异步消息处理机制来解决之一问 ...

  3. Android消息传递之Handler消息机制

    前言: 无论是现在所做的项目还是以前的项目中,都会遇见线程之间通信.组件之间通信,目前统一采用EventBus来做处理,在总结学习EventBus之前,觉得还是需要学习总结一下最初的实现方式,也算是不 ...

  4. 通俗理解Android事件分发与消费机制

    深入:Android Touch事件传递机制全面解析(从WMS到View树) 通俗理解Android事件分发与消费机制 说起Android滑动冲突,是个很常见的场景,比如SliddingMenu与Li ...

  5. Android框架中的广播机制

    一.广播通过Intent发送出去 // 定义广播的意图过滤器 private String action = "com.xxx.demo.Broadcast.STATUS_CHANGED&q ...

  6. [转载] Android动态加载Dex机制解析

    本文转载自: http://blog.csdn.net/wy353208214/article/details/50859422 1.什么是类加载器? 类加载器(class loader)是 Java ...

  7. 九、Android学习第八天——广播机制与WIFI网络操作(转)

    (转自:http://wenku.baidu.com/view/af39b3164431b90d6c85c72f.html) 九.Android学习第八天——广播机制与WIFI网络操作 今天熟悉了An ...

  8. Android 中View的绘制机制源代码分析 三

    到眼下为止,measure过程已经解说完了,今天開始我们就来学习layout过程.只是在学习layout过程之前.大家有没有发现我换了编辑器,哈哈.最终下定决心从Html编辑器切换为markdown编 ...

  9. Android中的Handler的机制与用法详解

    概述: 很多android初学者对android 中的handler不是很明白,其实Google参考了Windows的消息处理机制, 在Android系统中实现了一套类似的消息处理机制.在下面介绍ha ...

  10. Android学习笔记(广播机制)

    1.Android的广播机制介绍 收听收音机也是一种广播,在收音机中有很多个广播电台,每个广播电台播放的内容都不相同.接受广播时广播(发送方)并不在意我们(接收方)接收到广播时如何处理.好比我们收听交 ...

随机推荐

  1. 未来JDK中将不再包含JDBC-ODBC桥

    今天才发现一个重要问题,java中居然没有这个桥了.让初学者真的泪流了! 甲骨文公司主要技术人员.JDBC规范领导者Lance Andersen今天在博客中称,从Java SE 8(java 1.8版 ...

  2. ARTS Week 8

    Dec 16, 2019 ~ Dec 22, 2019 Algorithm Problem 53 Maximum Subarray 最大子数组 题目链接 题目描述:给定一个数组,在所有连续的子数组中, ...

  3. 未来图书-需求分析——脑机接口、VR、AI推荐系统

    个人比较喜欢科幻作品,也常常畅想未来.. "书"作为几千年来人类文明信息载体,必然会不断演变.. 文荟宿舍墙上贴着Elon Musk的海报,向往像他一样能够在有限的生命中用极致的想 ...

  4. Go语言实现:【剑指offer】变态跳台阶

    该题目来源于牛客网<剑指offer>专题. 一只青蛙一次可以跳上1级台阶,也可以跳上2级--它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 找规律: 1阶:1种: 2阶:2 ...

  5. 票据传递之MS14-068

    MS14-068是密钥分发中心(KDC)服务中的Windows漏洞.它允许经过身份验证的用户在其Kerberos票证(TGT)中插入任意PAC(表示所有用户权限的结构).该漏洞位于kdcsvc.dll ...

  6. HDU 5391 水题。

    E - 5 Time Limit:1500MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u Submit Statu ...

  7. Centos 7 使用(Service iptables stop/start)关闭/打开防火墙 Failed to stop iptables.service: Unit iptables.service not loaded.

    背景: 测试部署NetCore 项目到linux 系统时,窗口显示项目部署成功:但是本机无法访问(linux 在虚拟机上[ centos 7.6] );  如下图↓ 能够相互ping  通,(Xshe ...

  8. 疫情之下,使用FRP实现内网穿透,远程连接公司电脑进行办公

    当前情况下,经常会有需要到公司电脑进行一些操作,比如连接内网OA,数据库或者提交文档.为了减少外出,将使用frp进行内网穿透的方法进行一个说明. 前提条件 1. 一台拥有公网 IP 的设备(如果没有, ...

  9. Python——捕获异常

    一.什么是异常 """异常:错误,bug处理异常:尝试执行某句可能出现异常的语句, 若出错则用正确的代码去替代. try: 可能发生错误的代码except: 如果出现异常 ...

  10. C# 通过反射检查属性是否包含特定字符串

    public static bool StringFilter(this object model,string filterStr) { if (string.IsNullOrEmpty(filte ...